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CHAPTER I
INTRODUCTION

In the ground maneuvering of aircraft equipped with
swiveling landing gears, there sometimes arises the problem
of violent oscilllations or shimmy of the landing gear which
may lead to fallure of the gear. 1In the past this problem
has been handled largely by the empirical procedure of
eéquipping landlng gears with supplementary shimmy dampers
whose slzes have been controlled largely by practlcal expe-
rience. However, this empirical type of approach has not
proved entirely satisfactory as is evidenced by occasional
difficulties which are experienced with wheel shimmy.
Moreover, for radically different types of complex flexible
landing gears it is highly doubtful whether any empirical
approach based purely on past experience could élways safely
and optimally taeke into account all of the possible con-
ditions which a landing gear might be subjected to in actual

operatlion.
Historical Background

Because of these considerations a considerable amount
of theoretical and experimental work on wheel shimmy has

been done, mostly in the past 25 years. The historical
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background of thils work, as taken in part from & paper by
Dengler, Goland, and Herrmanl may be brlefly described as
follows. Wheel shimmy first arose as a problem in automo-
biles around the year 1920 and from that time untll the
midthirties a considerable amount of research was devoted to
this automobile problem. Much of thls early research was
concerned with factors peculiar to the automobile problem
and is not directly applicable to the alrcraft problem which
i3 of primary concern in the present investlgation. However,
two lmportant fundamental contributions to an understanding
of the general wheel shimmy problem were made In thls perlod
by Broulhiet? in France in 1925 and by Fromm? in Germany
several years later. These two investigators were sapparently
the first ones to recognize the importance of tire lateral
flexibility and cornerlng power as primary factors influen~
c¢ing the occurrence of wheel shimmy.

In the midthirties the alrcraft wheel shimmy problem

became of Importance and most of the subsequent literature

Max Dengler, Martin Goland, and Georg Herrman,
"A Bibliographlc Survey of Automobile and Aircraft Wheel
Shimmy," WADC Technical Report 52-141, 1951, 142 pp.

e M. G. Broulhiet, "La Suspension de la Direction de
la Voiture Automobile, Shimmy et Dandinement," Bull. Soc.

Ing. Civ., Vol. 78, July 1925, Pp. 540-554.

5 H. Fromm, "Kurzer Berichte uber die Geschichte des
Theorle des Radflatterns," Berichte 14,0 der Lilienthal-
Gesellschaft, 1941, Pp. 53-56,




fﬁl'ﬂ”‘"

3

on wheel shimmy 1s concerned with the alrcraft problem. At
the beginning of thls perlod, a number of significant con-
tributions were made by Schlippe and Dietrich,h’5’6 Melzer,7
and Maier8 in Germany, Greldanusd in the Netherlands,
Kantrowitzl0® and wyliell in the United States, and Templel?

and Taylor13 in England. These various investlgators each

4 B. von Schlippe and R. Dietrich, "Das Flattern

eines bepneuten Rades," Berichte 1,0 der Lilienthal-

Gesellschaft, 1941, Pp. 2%5-L5, 63-66.

2 B. von Schlippe and R. Dletrich, Zur Mechanik des
Luftreifens, ZWB Special Publication, 192,720 pp.

é B. von Schlippe and R. Dietrich, "Das Flattern eines
mit Luftrelfen versehenen Rades," ZWB Technische Berichte,
Vol. 11, No. 2, 194k, Pp. 1-16.

T u. Melzer, "Beltrag zur Theorie des Spornradflatterns)
ZWB Technische Berichte, Vol. 7, No. 2, 1940, Pp. 59-70.

8 E. Maler, "Theoretische Untersuchungen uber dle
Stabilltat von Flugzeugfahrwerken," ZwB FB 1166, 1940, 59 pp.

9 J. H. Greldanus, "Control and Stability of the Nose=-
Wheel Landing Gear," Report V 1038, Netherlands National
Aeronautical Research Instlitute, 1942, 27 pp.

10 Arthur Kentrowitz, "Stability of Castering Hhoels
for Alrcraft Landing Gears," NACA Technical Report 686,
1940, 16 pp.

11 Jean Wylle, "Dynamic Problems of the Tricycle
Alighting Gear," Journal of the Aeronautical Sciences, Vol. 7,
No. 2, Dec. 1939,  Pp. G1-G7.

12 4. Temple, "Preliminary Report on the Theory of
Shimmy in Aeroplane Nose Wheels and Tail Wheels," RAE

Report No. AD 3148, 1940, 4O pp.

13 J. Lockwood Taylor, "Osclllation of Castoring
Wheels," Aircraft Engineering, Vol. 13, No. 143, Jan. 1941,
pP. 13,
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developed at least slightly different theorles of tire
motion and wheel shimmy, most of which take tire elasticlity
into account in different ways. Also experimental contrilbu-
tions were furnished by most of these investligators and also
by Dletz and Harlinglh and Schrode .12 However, as yet, no
thorough evaluation has been made of these varlous theories
and data to determine the absolute and‘rélative merits of
the theories,

The major recent contrlibutions to the wheel shimmy
problem are the work of Rotta,l6 Bourcler de Carbon,17 and
Moreland.w’l9 Rotta slightly extended the most advanced

earlier theory, developed by Schlippe and Dietrich, and made

h 0. Dietz and R. Harling, "Experimentelle
Untersuchungen uber das Spornradflattern," ZwB FB 1320,
1940, 101 pp. —

15 m, Schrode, "Verminderung der Flatterneigung von
Sporn- und Bugwerken durch Einbau besonders geformter Reifen,"
ZWB Technische Berichte, Vol. 10, No. L4, April 1943, Pp.113=-

16 J. Rotta“ "Propertles of the Aeroplane During Take-
Off and Ali%hting, Part 1: Reports and Translations No. %éi,
Dec. 19&5, 3 pp; Part 2: Reports and Translations No. 970,
Feb. 138,

85 pp., British MInlIstry of Supply.

17 christian Bourcier de Carbon, "Etude Théorique du
Shimmy des Roues d'Avion," Office National d'Etudes et de
Recherches Aéronautiques, Publication No. 7, 1948, 98 pp.

18 willtam J. Moreland, "Landing-Gear Vibration,"
AF Technical Report No. 6590, 1951, 70 pp.

19 willtam J. Moreland, "The Story of Shimmy," Journal
of the Aeronautical Scilences, Vol. 21, No. 12, Dec. 1954,

ﬁ._ﬁB-Soa .
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a detalled study of many of the fundamental propertles of
pneumatic tires which enter into the wheel shimmy problem.
Bourcier de Carbon developed a theory of wheel shimmy much
like the earlier theory of Greidanus which, although not of
so advanced a nature as the Schlippe-Dietrich or Rotta
theories, 1s perhaps the most complex existing theory which
would be acceptable to alrcraft designers from practlcal
considerations. Bourcler des Carbon also polinted out some

of the limltations of the earlier theorles of Kantrowit:z

and Wylie. Moreland has advanced the idea that 1t may be
more important for many shimmy problems to take intoc account
landing gear structural elasticity rather than to take tire
elasticity into account In great detall and he has developed

several versions of & simplified tire motion theory.
Purpose of the Present Investigation

It 1s evident from the preceeding hlstorlcal back-
ground that there exist in the literature a large number of
theoretical and experimental papers dealing with the subject
of wheel shimmy. However, most of these theoretical papers
have not been correlated with each other or with the avall-
able experimental da;a)sb that consequently there exist at
present a large number of at least superficlally different

theories of wheel shimmy and a fair amount of experimental
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data which have not been correlated with many of these
theories, The primary purpose of the present Investlgatlon
1s to clear up this partial confusion of theorles by demon-
strating that most of the previously published theories
represent various approximations to one basic general
linearized theory derived herein and that most of the pre-
viously published llnearized theorles which do not represent
approximations to thls general theory possess certaln unde-
sirable characteristics. This basic general theory, whlch
1s henceforth called the summary theory, 1is derived in such
a manner that 1t makes use of and 1is compatible with the
soundest features of practlcally all of the previously pub-
lished theories, lnsomuch as this 1s possible at present;
however, for the main part, this summary theory 1s a minor
modification of the theory proposed by Schlippe and
Dietrich.20’21'22

A second purpose of this paper 1s to develop & serles
of systematlic approximations to the summary theory sultable
for use in the treatment of problems too simple to merit the
use of the complete summary theof} a%d to assess both these

systematlic approximations and the pﬁeviously published

20
B. von Schlippe and R. Dietrich, "Das Flattern eines

bepneuten Rades," op. cit.

2
1 B. von Schlippe and R. Dletrich, Zur Mechanik des

Luftreifens, op. cit.

22 B, von Schlippe and R. Dietrich "Das Flattern
eines mit Luftreifen versshenen Rades," _2. cit.
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theorlies both with rgsgect to how these theories are related
to the summary theoﬁ} :Td with respect to how the predictlons

of these theorles aége with the experimental data avallable,.

Statement of the Problem Considered and

the General Approach Thereto

The purpose of the next section of this chapter 1s to
specifically define the problem considered in thls thesis and
to clarify in detail the correlatlon between the varlous parts
of the thesis which deal with different aspects of thls same
problem.

The basic problem to be considered herein 1s the
rolling motion and wheel shimmy of a rigid wheel equipped
with an elastlc tire where the wheel 1s attached to some
supporting structuré such as a landing gear strut. The
motion of the rigid wheel can, of course, be completely
described by six independent varlables corresponding to the
three degrees of freedom In translation and rotation of the
wheel. In addition to these six degrees of freedom, there
exists a seventh degree of ffeedOm which 1is assoclated with
the distortion of the elastlc tire or the track of the tire
on the ground which results from the application of a given
motion to the rigid wheel. Thus, in general, the motion of a
rigid wheel with an elastic tire represents a system of

motion involving seven varlables and consequently to solve
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for the motion of a landling gear under arbitrary rolling
conditions, seven equations correlating these different
variables are required. Six of these equatlions will usually
be the equatlions expressing the sum of the forces or moments
acting slong each of the three principal coordlnate axes;

the seventh relation will be an equation, usually a kinematic
equation, which correlates the tire dlstortion with the other
variables.

The present paper will not be concerned with all of
these seven degrees of freedom. Speciflically, the major
part of this paper will be restricted to a consideration of
cases of wheel motion where the wheel 1s rolling at an
approximately constant velocity v without braking and con-
sequently with constant angular velocity ® and where no
strong vertical oscillations are involved., Thus, for exam~-
ple, effects of acceleration or deceleration, which are
known to have at least some influence on the rolling motion,23
are not consldered. Similarlj fore and aft oscillations of
the wheel are excluded.

With the above three restrictions, the seven varlable
problem of & rolling wheel becomes reduced to the conslidera-
tion of & system involving the following four degrees of
freedom: (1) swiveling of the wheel about a vertical axis

through the wheel center point, designated by the symbol &;

253 H. schrode, op. cit.
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(2) lateral tilting of the wheel with respect to a vertical
plane parallel to the direction of undisturbed motion,
designated by the symbol Y; (3) lateral dlsplacement of the
wheel with respect to a reference space flxed axls parallel
to the direction of undilsturbed motion, deslignated by the
symbol m; and (L) the lateral displacement of the tire
footprint on the ground (which 1s a measure of the tire
distortion), designated by the symbol y,. These coordlnates
and thelir positive directlions are shown in Figure 1.

In order to obtain four equatlons correlsting these
four varlables, &, Y, n and yg, the following procedure is
followed in the present paper. First of all, after some
remarks on general restrictions, a derivatlon 1s giver 1in
Chapter IT to establish a kinematic equatlon relating the
four variables, Then, in Chapter III, the primary forces
and.mOments acting on a rolling elsstlc wheel are discussed
and are used later in Chapter IV to establish the other
three equations,

After having established these general equations of
motion, it 1s recognized that for meny applicélions these
equations in their most general form are relatively compli-
cated and, wﬁile they are not by any means insoluable In this
general form, it 1s, however, profitable to simplify the
equations for those problems which do not require the detalled

equations of the summary theory. Therefore, a number of
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of systematic approximations to the summary theory are for-
mulated In Chapter V. A second reason for establishing
these systematlc approximations lies in the fact that they
furnlsh a framework for comparing the summary theory with
the other existing theories of wheel motion, most of which
are closely related to these systematic approximations.
Such a comparlison of the summary theory and its systematic
approxlimations with the existing theorles of wheel motion
1s carried out in Chapter VI,

In Chapter VII, which 1s the last major part of this
thesis, the application of the summary and approxlmate
theories to two cases of simplified types of landing gear
conflgurations 1s dlscussed. The first case 1s chosen pri-
marily to demonstrate the correlation between theory and
experlment and the second case to demonstrate the correla-
tion between the summary and syétematic approximation

theorles,
General Restrictions

Before entering upon the détéiled derivation of the
equations of motlion, some mention will be made here as to
some, as yet not dlscussed, restrictions on the snalysis to
follow., First of all, the present paper 1s limited exclu-
sively to the subject of linearized theories. Some mention

should be made here, however, as to the question of whether



Qs

L

12

a linearized theory 1s sufficlent to describe the important
features of wheel shimmy. In regard to this question, it
appears at present that a llnearized theory will provide at
least a falr qualitatlive description of shimmy behavior in
regard to the location of stabllity boundaries and to the
question as to whether a given motion is stable or not.
However, agreement between theory and experiment, to be
shown later 1n this paper, 1s still not good enough from a
quantitative point of view to warrant the conclusion that
nonlinear effects can always be neglected or replaced by
équivalent linear effects., |

Another limltatlion of the linearized theory is that
1t does not permit calculation of the maximum steady state
shimmy amplitude for those steady state self-excited shimmy
motions which sometimes occur on actual landing gears.

While the preceding considerations suggest that non-
linear effects In landing gear motions may possibly be of
Importance for some practlical problems, their consideration
wlll be considered beyond the scope of the gresent investi-
gatlon and henceforth only linearized theory is discussed,

Another restriction on the considerations of this

Investigation rlses in connection with the assumption adopted

throughout this paper that the finite width of a tire need
not be taken into account in developing a tire motlon theory

for single tires of conventional cross section., This
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assumption appears at present to be at least partly justi-
fled on the basls of the experiments of Schlippe and
Dietrich;au on the other hand, since their tests relevant to
this matter were extremely limited in scope, it 1s conceiv-
sble that thelr experimental results may not be completely
typical. Consequently, perhaps 1t would be well if some
future attention were directed to a more thorough evaluation
of tire wildth effects. While this question will be consid-
ered beyond the scope of the present investigation, it is
noted that some theoretical work on this subject has been
already done by Schlippe and Dietrich?5 and later by
Rotta.26

2
4 B. von Schlippe and R. Dietrich, Zur Mechanik des

Luftreifens, op. cit.

25 1v14.

26 J. Rotta, op. cit.
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CHAPTER II
KINEMATIC RELATIONSHIPS FOR THE ROLLING TIRE

In this chapter, the kinematic equations for the
motion of a rolling tilted elastic tire without skidding
are derived in accordance with the theoretical analysis of
Schlippe and Dietrich.27 This derivation differs only
8lightly from that analysis in that it omits some refine-
ménts of the theory which are necessary for very wide tires
and 1t includes some influences of tilting of the tire in
more detall. It should be noted here, however, that the
modifications made in regard to tilt ﬁay not be‘necessarily
of any great practical importance for most problems; however,
since a few problems are conceivable where they may be of
interest, they are included.

Specificly, the object of this chapter 1s to obtain
8 relation correlating the absolute lateral deflection of
the center point of the tire ground contact area y; with
the corresponding wheel coordinates of lateral deflection n,
swivel angle @ and £11t Y. (These coordinates are 1llus-
trated 1n Figure 1.) To attain this object, the following
procedure 1is used, First, some necessary geometrical rela-
tions are set down and aome necessary background information

regarding tire distortion 1is discussed. Then this information

pd ’ .
! B. von Schlippe and R. Dietrich, Zur Mechanik des

Luftreifens, op. cit. 2

iy
1l
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1s utilized to obtain a kinematic relstion between the
lateral deflection of the tire center band or equator. at
the leading edge of the ground contact area and the coordi-
nates ﬁ, Yy and ©. Next a kinematic relastion between the
lateral deflections of the equator at the center and leading
edge of the ground contact ares (designated by Yo é&nd y;
respectively) 1s-established and flnally these two relations
are combined to obtaln a basic kinematic equation correlating
Yo with %, vy and o,

The derivation of these kinematic relations is baséd
upon the following physical concepts; As a tire moves for-
ward, the tire material on the circumference Just ahead of
the ground contact area is laid down or developed on the
ground without skidding with respect to the ground to become
the new leading portion of the ground contact area, so that
the track of the tire 1is completely determined by the lateral
distortlion coordinate of the foremost ground contact point
Y1 &nd the slope of the distorted centerline or equator of
the tire at that point,

Geometrical Relatlonships

The primary geometrical quantities involved in the
problem of a rolling tire are shown in Flgure 1, which gives
an instantaneous view of a distorted tire with respect to an

arbitrary space-fixed XYZ coordinate system, the X-axils

i
v“u{
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being parallel to the ground and approximately parallel to
the direction of wheel motion, the Z-axls being perpendicular
to the ground, and the Y-axis belng perpendicular to the X-
and Z-axes. Parts (a) and (b) of thls Figure represent side
and bottom vliews, respectively, for a rolling wheel under
swiveled tilted conditions. For the sake of clarity, part (¢)
of this Figure, which shows an end view of the rolling tire,
has been drawn to a different scsle from part (b) of this
Flgure and also has been drawn for the unswiveled condition
only. In dlscussing the geometrical quantities in this
Figure, the following terminology and symbols are used. By
the wheel center plane is meant the plane of symmetry of the
wheel perpendicular to the wheel axle. By the tire center-
line or equator 1s meant the tire points which on the undls-
torted tire are located at the intersection of the tire outer
circumference with the wheel center plane; under the action
of moments and iateral forces these tire points are deflected
laterally by an amount A with respect to the wheel center
plane. The symbol ki designates t he lateral deflection of
tire equator points which are not in contact with the ground
and lg designates the lateral deflection of points which
are in contact with the ground. The particular ground con-
tact point at the center of the ground contact area is

designated by ™,
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The lateral distance of the wheel plane from an
arbitrary space-fixed XZ plane 1is deslgnated as ny for
points off the ground at a vertical helght 2z and as ng
for points on the ground. The lateral distance of tire
equator points from this XZ-plane are simllarly designated
as vy, and yg' respectively. The difference between 7y
and % 1s the tire lateral distortion A or

and

-ﬁ (202)

The tire contacts the ground in a finite area having
8 length which 1is designated as 2h. The width of this area
1s assumed to be negligible small, that s, the ground con-
tact area 1s assumed to be reduced to a ground contact 1line.
The foremost ground contact point (1in the direction of
motion) 1s designated by the subscript 1, the rearmost
point by the subscript 2 and the center point by the sub-
script 0 . Except for braking and accelerating effects,
the center point 0 has approximately the same horizontal

X coordinate as that of the wheel axle,
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Distances about the tire equator or circumference
are measured in terms of the circumferential coordinate s
whose origin 1s taken at the point 0.

The wheel 1s assumed to move at constant velocity v
approximately in the direction of the X-axis. The wheel 1s
laterally inclined with respect to a vertical Z-axlis by the
tilt angle y and 1s swiveled with respect to the XZ-plane
by the swivel angle ©. Both tilt and swivel angles are
assumed to be small, that 1s, cos € < cos ¥al, sin vy & y
and sin 6 ¥ ¢,

The center polnt of the wheel axle»is located
vertically at a distance r3 from the XY ground plane and
1s laterally located with respect to the ground contact
Intersection of the wheel plane by a distance rzy or with

respect to the XZ-plane by ﬂ3 where

ﬁ5=ﬂ0'r37 (2'3)

Tire Distortion

In thils section a short discussion 1s given of the
features of tire distortion which are pertinent to the deriv-
ative of the basic kinematic relations of this paper,

Experimental and theoretical considerations, such as

have been given by Schlippe and Dietrich28 and

% B. von Schlippe and R. Dietrich, Ibid.
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Rotta,?d respectively, indicate that if the tire equator in
the ground contact region of a tire 1s subjected to arbl-
trary lateral distortion, then the lateral distortion of the
tire equator off the ground M, tends to dle out as an
exponentlially decaylng function of the circumferentlal dls-
placement s (for example, see Figure 2(a)). Thus near
tire polnt 1 off the ground the tire distortion tends to

approach the pattern described by the equation

and a simllar equation applies near tire point 2. The
exponential constant L 1s a tire characteristié having the
dimension of a length and is called the relaxation length.
It 1s noted that the value of relaxatlon length near point 2
1s not necessarily exactly the same as that near point 1;
however, since the former relaxatlion length is not used in
this paper in any critical calculations, there is no point
in taking Into account the difference.

In regard to the accuracy of equation (2.4) very near

to point 1, it should be emphasized that this exponential

varlation 1s only an expression of the esquilibrium condition

<9
J. Rotta, op. clt.
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Tire equator

(a) Assumed theoretlcal shape of tire equator distortion”
T _ onary tw1s%ed tlre (v = O)

;at Test (solid lines) and Jjust ‘after starting to
oll (dashed lines).

FIGURE 2

TIRE EQUATOR DISTORTION
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which the tire equator distortion would reach in the absence
of any restraints. 1In actuality, 1t 1s obvious that there
exlst condlitlions where this distortion curve cannot be
completely exponentlial in form. For example, for the case
of pure lateral deflectlon of a stationary tire, the tire
equator in the ground contact zone 18 (neglecting skidding)
a straight line parallel to the wheel center plane and
extending from point 1 to point 2. (See s0lid line outline

in Figure 2(b).) Consequently, the existence of an exponen-

~tial curve just to the right of point 1, and including point

1, would imply the existence of a sharp bend in the tire at
point 1 such as 1is indicated in Figure 2(a). However, since
a sharp bend 1s impossible because of finite tire stiffness,
it follows that on a stationary tire in general the exponen-
tial variation given by equation (2.4) cannot be valid very
close to point 1. However, experimental evidence does indi-
cate that beyond a short transition region ahead of point 1

the tire equation distortion curve does have an essentially

~exponential character (see solid line outline in Figure 2(b)).

" As the wheel rolls shead the nonexponential transition reglon

of the tire equator is lald down or developed on the ground
as 1t passes into the ground contact zone, and the more
nearly exponential part of the equator curve moves down

toward the ground (see dashed line outline in Figure 2(b))
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and 1s eventually developed on the ground, so that after
rolling a short distance from rest and during normal rolling
conditions (see Filgure 2(c)) the tire equator distortion

at the front end of the tire can approach the assumed expo-
nential variation of equation (2.4).

At the rear end of the tire,_the equator distortion
curve during rolling does not so closely approxlmate an
exponential variation since at the rear end there is no pro-
cess of laying down or development such as 1s responsible
for the exponentlal varlatlon at the front end. However,
since the rearward section of the tire equator 1s not used
in any critical calculation in this paper, 1t 1s, neverthe-
less, asssumed hereafter for simplicity that this equator ‘
curve 1s also exponentlal.

Now having given some reason for accepting equatlon
(2.4) as the basic equation for tire equator lateral dis-
tortion near point 1 for rolling conditions, the total
lateral displacement of the tire from the XZ-plane in this

reglon cen then from equation (2.1) be written in théfform
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and substituting the geometrlcal relatlion +ny = ﬂg - 2y
(see Figure 1) gives

s-h
Vg T ng - Y +7\10 R (2.6)

This equation will not be utilized to esteblish some baslic

kilnematic relations.
The Kinematic Equation

By making use of the physical concepts discussed
earlier in this chapter together with equation (2.6), it 1s
now possalble to establish as follows the basic differential
equation relating the tire deflection at the center of the
ground contact areé Yo with the wheel coordinates mn, ©
and v. ‘

In the ground contact surface between tire and ground
there 1s assumed to be perfect adhesion, that is, no skidding.
As the tire rolls forward (arbitrarily swiveling, tllting
aﬁd moving laterally) by a distance dx a new element of
the tire of length ds above and in front of point 1 1is
lald down or developed on the ground. This tire element,
before being laid down on the ground, had the lateral dis-

tortion variation given by equation (2.6). This equation,
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after differentlation with respect to s, ylelds for a

given instantaneous positlion of the tire the following rate

of change of di stortion

dy, _ dng dz 1 s8-h

T W -vT-Lhe T (2.7)

and at the point 1 where s = h and Y1+ T N1

dy1> (dng) dz) 1
(‘at:f?;s—l-\r(a'sl-rh (2.8)

Conslder the term (%%) . This 1s simply the sine of the
1

angle between the ground and the tire equator at point 1

(see Filgure 1), Just to the left of point 1 the tire is

flattened on the ground or 4% = o, 71 95) were dif-
ds ds/y

ferent from zero this would then imply a sharp bend in the

~ tire at point 1. However, because of the finite bending

stiffness of an actual tire a sharp bend 1s impossible; thus

(%%)1 = 0 and equation (2.8) reduces to the relation

(), - (), -2
T/ G \T/ - Th (2.9)

1




i

§

0

"o

25

ds,

Further, since (dz) = 0, s is a horlizontal coordinate
1 .

near point 1. The rate of change of wheel lateral displace-
ment ng with respect to the horizontal coordinate at any

given instant 1s just the swlvel angle 6, hence it follows

that

(dyi) =0 -fN (2.10)

If the tire 1s assumed to have no sharp bend at point
1 (dyy/ds)y = (dyg/hs)l at this point., Then, since
(dyg/as)l 1s the slope of the tire equator on the ground
at point 1 and since no slipping 1s assumed to exist, 1t
follows that this slope must coincide with the track of the

rolling tire on the ground which is dy;/dx. Thus

dy; 1
I =°e-ith

£

or designating differentiation with respect to x by the

operator D = é% and rearranging

LDy; = L8 = N (2.11)
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g

Y=ﬂ3+119+(r3-3_.1£1.)Y

o * ® - r

= (l + llD + 12D2 + ] . ] )y

0
-
= (1 + Z lnDn)Yo
n=1
= (1 + LD)e"Py,
hV-lDt
= (1 + Lv-1py)e Yo (2.20)

where

l;=L+h
1, = (2L + h)h/2
ln = (nL + h)a?~1/n1

Equatioh (2.,20) furnishes several alternate forms of the

basic kinematic equation (2.16) which are useful in later

~ chapters.,




CHAPTER III
FORCES AND MOMENTS ON THE WHEEL

In this chapter the primary forces and moménts actlng
on a rolling wheel are discussed and where possible equations
are set down for these guantities, These equations are
utilized in Chapter III together with the preceding kinema-
tic equation to establish the equations of motion for a
rolling wheel.

Throughout thls discussion all forces along the
coordlnate axes are consldered posltive if they tend to move
the wheel in the direction of the positive coordinate axes;
all moments about the coordinate axes X, Y or Z or other
parallel axes are considered positive if they tend to produce
wheel rotation from the positive Y-axis toward the posltive
Z-Qxis, from the positive Z-axlis toward the positive X-axls
or from the positlve X-axis toward the positive Y-axis,

respectively.
Lateral Elastic Force

First conslider the lateral elastlclty properties of a
tire, If a statlic untlilted tire 1s laterally deflected at

its base with respect to 1ts rim by a lateral F_, it pro-

J
duces an equal spring reaction force roughly proportional to

the mean lateral distortion )\me or, 1lnversely, a lateral

an

32
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tire distortion A creates a proportional ground force

mean

F If the lateral distortion of the center of the ground

A°
contact llne XO 1s teken as the mean dlstortion then the

elastic ground force 1s
Fy} = K}XO = K)‘(yo - ﬂo) = K)(YQ - ﬂ} - P5Y) (3.1)

where I(l 1s the tire lateral spring constant or side stiff-
ness. Thls relation is used in most papers. However;
Schllippe and Dietrich>) Rottaﬁ‘L do use a slightly different
expression., These investigators take the tire mean lateral
distortion equal to the average of the distortion at the
leading and trailing edge polnts of the ground contact area

(points 1 and 2) and thus obtain the equation

Fop =5 K (A + ;) (3.2)

instead of equation (3.1). The true equation for Fy) is
probably more complicated than elther of these two equations;
however, since no plausible means of obtaining a better
equation is avallsble gt appears advisable to select one of

the above equations for use in this paper. Although it 1is

33 B. von Schlippe and R. Dietrich, "Das Flattern eines
bepneuten Rades," op. cit.

J. Rotta, op. cit.
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poséible that equation (3.2) may be slightly the better
eduation for a few speclial cases of wheel motion, equation
(3.1) 1s much simpler to work with and in the majority of
cases of wheel motion it makes 1little difference which of
the two equations 1s used. Therefore, for the sake of
simplicity, equation (3.1) is adopted her?after in the
analysis of this paper as the basic equation for the lateral

force on a wheel due to tire lateral deformatlon.
Torsional Elastlc Moment

Consider next the torsional elastlicity properties of
& tire, If a tire 1is twisted on the ground about a vertlcal
axis by an angle a there arises a restoring ground moment

roughly linearly proportional to the twlst or

Mza = Kqa (3.3)

The tire twlst 1s equal to the mean angle between the track

of the tire on the ground and the wheel plane; that 1is,

@ = D¥mean - ©. Taking the mean value of Dypgan 88 Dygq

glves

a
]

Dyg - © (3.4)
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so that
Myq = Kq(Dyo - ©) = Kg(v IDgyg - @) (3.5)

Most investlgators of tire motlon have used this relatlon.
Howsever, Schlippe and Dietrich35vand Rotta36 instead tsake
the mean angle equal to (A} - A»)/2h and thus obtain the

moment equation

which leads to relatively more complicated equations of
motion than does equatlion (3%,5). However, there 1s no
strong reason for belleving equation (3.6) to be a signifi-
cant Improvement over the simpler equation (3.5). There-
fore, in the analysis of this paper, the simpler equation 1s
used.

It i1s noted that Melzer>7 has used the less accurate

relation that the moment due to tire twist is

Hyg = e (3.7)

55 B. von Schllippe and R. Dietrich, "Das Flattern
eines bepneuten Rades," op. cit.

36 7. Rotta, op. clt.

37 u. Melzer, op. cit,



36
which inmplies the relation 9:>>~DyO (see equation (3.5))
which 1is, however, not true 1n all practical cases. Conse-
quently, in regard to this point Melzer's theory should be

viewed with some caution.
T11lt Elastlic Force

Rotta38 has shown that 1f a tire s tilted from the
vertical Z-axls by an angle «y without lateral distortion
of the equator (XO = 0) there arises s restoring ground
lateral force approximately linearly proportional to the

11t angle or

FyY = "KAY'Y (3'8)

where Ky 1s the constant of proportionality. Most authors
(excepting Rotta) have not considered the effects of this
force term although they have considered other effects of

the same order of magnitude.
Vertlical Load Center of Pressure

Under some circumstances the vertical load Fg
influences the wheel motion. To consider this influence, 1t

1s necessary to know the locations of the center of pressure

7% J. Rotta, op. cit.
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of this force., 1In the XZ-plane (Figure 1) this center of
pressure lles approxlimately below the wheel axle in line with
the point O, In the YZ-plane the center of pressure is
shifted laterally from the intersection of wheel plane and
ground Tn; as a result of lateral distortion ko eand tilt
Y. As 8 first approximatlon this shift may be taken as
linearly dependent on Ay and y so that the lateral center

of pressure distance ¢ from the XZ-plane becomes

e = ng + o hy - CypY

H

ea¥p + (1 - eplng = coy

Cp¥y t+ (1 - c;‘)n3 + [(l - cx)rj - C%JY (3.9)

where c, and ¢, are constants. (The signs of the terms

are chosen such that ¢, and c, are positive numbers.)

Gyroscoplc Moment Due to Tire Distortion

Consider next how a gyroscoplic moment can arise in
the case of a rolling untilted wheel with lateral distortion
of the tire at the ground (Figure 3). While the solid rim
and axle parts of the wheel are untilted,the elastic tire,

due to the lateral deformatlion, 1s, on the average, tilted

with respect to the wheel center plane by an amount
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ATy

16 W ;—;f;; where r 1s the tire radius and T, 1s a

correction factor which indicates the effective fractlion of
the total tire mass which is tilted at thls angle.
Kentrowitz?9 who was apparently the only investigator to
consider this at least theoretlcally interesting factor, has

suggested that 7, % 1/2. This tilting action produces an
_ DA o™y

angular velocity Dth ;—:—;;

where Dt 1Indicates

differentlation with respect to time. This angular velocity
together with the rotational velocity of the tire « pro-

duces a gyroscoplc moment about the Z-axis of magnltude

where Iyt

the solid rim and axle) about the wheel axle. By using

18 the moment of ilnertla of the tire (excluding

equation (2.18) this equation can also be expressed in the

form

M,y = =I o7 2D (3.11)
ZA yvtvoov U, y

where the ratlo vA 1s, to a good enough approximation

for this secondary term, equal to the tire radius r.

29 Arthur Kantrowlitz, op. clt.
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Then substituting for vy, and @ /v in equation (3.11)

glves

2

T4I
1yt
Mo = - r{r + r5$ D7‘0

or abbreviating for later convenlence and expressing the

result In several alternate useful forms

My = -Tv°Dhg = -Tv?D(yg = M) = -TWDy(yp - Mz - r3v)
(3.12)

where

TlIyt
rir + r;)

(3.13)
Another method for deriving an expression for T {is dis-
cussed In a later section.

Gyroscoplic Moment Due to Wheel Tl1llting

If the entire wheel structure tilts at an angular
velocity Diy then there arises another gyroscoplic moment

of magnitude

MZ‘Y = —Iy'UDtY = -I“VDt‘Y/r (50114-)
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in addition to the term of equation (3.12). Here Iyw is
the total polar moment of inertla of the wheel (including -

the tire) about its axle,.
Gyroscople Moment Due to Wheel Swiveling

If the wheel swivels at an angular velocity Do
then there also arises a tilting gyroscopic moment of mag-

nltude
Mxg = =IywwDt® X -Iy,vDi6/r (3.15)

Tire Inertlia Forces and Moments

Thls section 1s concerned with an examination of the
influence of tire inertla forces and moments on a wheel
rolling at high speeds. Two types of such inertia effects
will be evaluated now in separate subsections. First,
Inertia forces and moments associated with lateral distortion
and twisting of the tire will be evaluated and second,
centrifugal forces and moments will be evaluated. Then the
overall effects of ﬁhese two inertla type forces and moments
will be considered together in a separate subsection.

Inertla forces and moments due to lateral tire

distortion.- At high rolling or shimmy velocitles tire iner-

tla forces and moments arlse which are proportional to the
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relative accelerations of the different parts of the tlire
(including the previously discussed gyroscoplc moment due

to tire lateral distortion). A rough estimate of these
forces and moments can be made as follows. It is assumed
that a fractlon one-third of the total mass of the tire mg
1s located on the periphery of the tire and is subjected to
the same acceleratlions with respect to the wheel hub as are
tire particles on the equator line, the remalning tire mass
being assumed substantlally undisturbed. The "active" mass
of the tire per unit circumferential length is then m,/6émr.
The latersal acceleration of tire partlicles on the right hand
silde of the tire off the ground in Figure 1(a) will be con-
sldered first. The tire lateral distortlion for this region
1s given by equation (2.4). The lateral relative velocity
of a tire particle, obtalned by differentiating this quantity

with respect to time is

s-h

Dgry = (Dghy - MyDys/Lle  *

The quantity D;s, which represents the peripheral veloclty
of tire particles with respect to the wheel axle 1s approxi-

mately equal to the negative of the rolling velocity v ao
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that the veloclty expresslion becomes

s-h

D N = (Dghy + vh;/L)e” L

t

Differentiation of this result to glve the tlre particle

relative acceleration ylelds the result

. s-h
Dy2hy = (Dghy + 2vDgAy/L + vAA,/1%)e L

The corresponding inertia force for thls part of the tire
is obtalned by Integrating this acceleration times the

active mass per unlt length. Thls gives the force term

m, s®™ p 2
155 D “Nqds and evaluatlon of this integral, after
=h
replacing the upper limit by infinity for simplification of
the result (which introduces no significant error because of
the rapldly decaying exponential function in thli), yields
the result l
= ok 2\, 12
AF = - Z-Tf; (Dt 1 + ZVDtxl/L + Vv l/L ) (5016)

The corresponding inertia moment term AM 1s glven by

m, [s=mr

o r sin ¢ Dtalids where »r 8in ® 1s the moment arm
8=
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(see FPlgure 1) and s 1is related to ® by the relatlon
8 - h=1r(?® - @1) and Q1_= sin'l h/r so that the moment

integral may be written in terms of @ 1n the form

. i r(®-91)
- b 2 2 2\ T T 1T
AM = zn—r ° r sin @ (Dt )\1 + ZVDtxl/L + Vv )‘l/L )Q rd¢

The evaluation of this integral, after replacing the upper
1imit by infinity (which introduces no appreclable error),

then ylelds the expression

2 /.2
mirL(h + L \1 = h</r<)
AM = - \ (Dg2h) + 2vDghy/L + voA /L2)
6n(12 + r2)

(3.17)

In a similar manner, for tire particles off the
ground on the left hand side of the tire in Figure 1(a) the
following expressions are obtained for the inertia force and
moment.

L
AF = - %%; (DyPh 5 = 2vD M /L + v2x2/12) (3.18)

_ mgrL(h + L\Jl - 0% /r?)

AM (Dy2n, - 2vDA,/L + veh,/19)
6m(12 + r2)

(3.19)
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In these two expressions it has been assumed, for reasons

previously discussed, that the relaxation length L for

both ends 6f the tire 1s the same,

To obtalin the inertla forces and moments for tire

particles In the ground contact area 1t 1s recognized that

for practically all cases where Inertia forces are important

the ground contact 1llne 1s close to a stralght line so that

the lsteral distortion for tire particles in this reglon can

be expressed fairly well by the equation

7\8=7\0+sa

and the corresponding velocity and acceleration are
Dt‘)\g = Dighg + 8Dga - va
2y - n 2 2

Dt xg = Dt XO + SDt QA = ZVDta

The total inertla force for thils reglon 1s then

- -3—; (thko - 2vDga)

(3.20)
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o and the inertia moment 1is
%
m s=h
AM = - -t sD¢2A _ds
énr g=-h 8
= 3n. 2
= ~m¢h”’Di“a/9mr (3.21)
The total inertia force Fyi obtained by summing up
the force terms in equations (3.16), (3.18) and (3.20) can
be stated conveniently in terms of 10 and a by using the
relations A, + %, = 2A\; and 11 - 12 = 2ha which are
valld for a substantially straight ground contact line.
>
This gives the ressult
8 mo o | |
Fyi = ?‘rTr- (llDt X0 + VZ)‘o/‘L) (3.22)
where 17 = L + h, and similarly for the total inertia
moment My4
m 2,2 3
My, = - 2t ( rhL(h +2L\12- he/r€) L) D 2a +
3w L™ +r 3r
J 2,2
r(h + L1 - h“/r
O =5~ P / (2thl0 + hvza/I) (3.23%)
- & IL“ + p . .
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To partly evaluate. the slgniflcance of these lnertla
expressions conslder first the inertls force for slnusoldal
osclllations such that XO = XOm siln vt and therefore
Dtelo = -nzko so that equation (3.22) may be restated as

- _ 0Bt .2 2
Fyi = - g;; (ve/L - 10 )10 (3.24)
In order to interpret the significance of the inertia
force, it 1s noted that the important tire force quantity
which 1s of Ilmportance for the subsequent analysis 1is the

net tire force Fyn acting on the wheel which 1s equsal to

the sum of the ground force F

7 and the inertla force

Fyi or
(3.25)

Next, consider how the inertis force modifies the ground
force Fy% which was pre;iously set equal to KK)O for the
case of a static tire (see equation (3.1)). In the dynamic
case, the relation between ground force and lateral tire
dlstortion may be modified by the lnertla effect. As a first
approximation for this modification effect it 13 assumed
hereafter that the modification of the ground force 1s pro-

portional to the inertia force or

FY)\ = Kxo - ﬁyF‘yi (3.26)
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where ny 18 a number whose absolute value willl be less
than unity 1f the modiflcation of the ground force due to
the inertia force is less than the inertia force 1itself.

After combining equations (3.2L), (3.25) and (3.26)
the followlng equation for the net tire force Fyn is
obtained.

Fop = [K)‘ - (1 - my) % (ve/L - 1102)]10 (3.27)

and from the form of this equation it can be seen that, in-
sofar as the ratio of net tire force to lateral deformation
1s concerned, the effect of the inertia force can be con-
sidered equivalent to a change in tire lateral stiffness

AK>‘1 equal to

= - g 2 2
8Ky, = ~(1 = mp) 5= (VE/L - 190 (3.28)
Similsrly from the inertia moment equation (3%.23), it can be
concluded from an examination of the terms contalning a
that part of the effect of this inertia moment is to change

the tire torsional stiffness by an amount A4K; where

MKy = - (1 - n;)mg|rh(h + L\jl - n?/r?)
3 12 4+ 2

(va/i -

Io?) - h%%% (3.29)
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and where 1, 18 a number for the torsional stiffness sim-
1lar to ny for the latersl stiffness. The remaining
inertia moment term in equation (3.23) proportional to

Dtlo, 1s simply the previously discussed gyroscoplc moment
due to lateral tire distortion., By comparing this term with
the previously obtained equation (3.12), 1t 1s seen that the

coefflicient * may be expressed by the equation

_2mgr(h + L \}1 - n?/r?)
5ﬂ(L2 + r2)

T

(3.30)

which usually gives approximately the same result as the
previously derived equation (3.13) with Kantrowitz's assump-
tion of Ty = 1/2. In regard to the questlon éf in what -
veloclity range are the above tire stiffness changes impor-
tant, i1t 1s convenient to postpone such a discussion until
after arderivation of the effects of centrifugal forces has

been made.

Effects of centrifugal forces.- Another 1Inertla

effect which may become significant at high speeds 1s pro-
duced by the centrifugal forces acting on the individual
mass elements of the tire. The action of these centrlfugal
forces appears @o be to Increase the tire stiffness as will

now be demonstrated by making use of a crude analysls which
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should give a qualitative ldea of the slze of this effeqt)

i

/ B

but which should not be regarded as possessing any stro&g
quantitative merit.

For the purpose of this estimate, one-half of the
mass of the tire 1s assumed to be concentrated in the tire
sldewalls and the other half is assumed to be concentrated
on the tire periphery.

If the tire lateral and torslonal stiffnesses K,
and K, be assumed to be directly proportlional to the ten-
sion in the tire sidewslls, then thers will bs two sources
of tire stiffness, namely, inflation pressure, which pro-
duces a sidewall tension approximately equal to wp per
unit circumferential distance, (where w 1is the tire width)

and centrifugal force, which produces the sidewall tension

1 m¢

> mm T corresponding to the peripheral tire mass

1/2 m¢. Thus the tire lateral stiffness may be expressed in

the form

Ky ~ Lrrlwp + mtv2

or equivalently as
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n, v2
B F sztatic( LY E;fz;;)

m, ve
K\ + t Kkstatic
static Limr2wp

It appears from thls equatlon that the Iinfluence of centrif-

ugal force 1s to Increase the tire lateral stiffness by an

amount AK}j where

MtVZK)‘
static (3.31)

LmrPwp

AKXJ =

and similarly for the torsional stiffness

- mtvzxa

Ky, = —— 32
25 = [rrr2up (3.32)

A

Significance of tire inertia effects wlth respect to

PO o
tire stiffness.- The significance of théltwo!}usgwéiggggggd}

tire ilnertla effects on the tire stiffness will now be con-
sidered.
First, for the lateral stiffness, the effective change

Ky from its statlic value 8Ky is obtained by adding the two
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increments asccording to equations (3.28) and (3.31), which
glves the following equation for the effective overall
change 1n tire lateral stiffness as a functlion of rolling

speed and shimmy frequency

) (1 - 'qy)mtlluz ) (1 - 11},)mtv2 . mtvzxk
5mr 3rrL J_‘_Trrzwp

AK 4 (3.33)

The flrst term Involving the shimmy frequency appears to be
small enough in comparison with K, such that it can prob-
ably be neglected for most practlical conditions., The last
two terms have opposite slgns 1if ﬂy < 1 and thus may
represent two partly countefbalancing effects. The second
term arose from the previous considerations of the lateral
acceleration of tire particles and is seen to effectively
tend to reduce tire lateral stiffness with lncreasing rolling
velocity 1if Ny < 1. The last term arose from the prevlious

considerations of centrifugal forces and 1s seen to effec-

. tlvely tend to increase tire lateral stiffness. These last

two terms indlcate that at high rolling speeds, if n_< 1,
T vy

the tire stiffness may either ﬁrasticlyjdecrease or 1ncrease,

depending on which of the two terms 1s larger, However,

both of these terms happen to be of the same order of magni-

tude and the derivations of both terms were based on too
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crude concepts to justify conclusions regarding which term
1s larger. Thus, the only conclusion that can be drawn 1s
that at sufflclently high rolling speeds, drastlc changes in
tire lateral stiffness may occur. Whether the stiffness
Increases or decreases can probably be settled only by
experiment.

To glve some quantitative measure of the veloclty at
which these inertla effects become of signiflcance, some
calculations were made to determine the veloclty at whlch

the magnitude of the second term in equation (3.3%) becomes

‘equal to Ks. By making use of Horne's static tire data for
A g

several modern aircraft tires,ho 1t was found that this
velocity averaged approximately LOO (T fps & 270 T mph
where r 1s expressed 1n feet. Simllar estimates for the
velocity at which the third term in equation (3.33) becomes
equal to K5 1ndicated approximately this same velocity.
Moreover, since thls veloclty 1s relatively high compared
wlth normal present day landing speeds, it appears that the
Inertla effects on tire lateral stlffness considered here can
probably, as a rule, be neglected.

For the torsional stiffness of a tire, the overall

effectlive change 1n torsional stiffness 4K, due to tire

‘ 40 Walter B. Horne, "Statlic Force-Deflection
Characterlstics of Six Alrcraft Tlires Under Combined Loading,"
NACA TN 2926, 1953, 92 pp.
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inertlia and centrifugal forces 1ls obtalned by adding the
two increments according to equations (3.29) and (3.32),

which gives the equation

1 - - h2 /pl
AKa=-( :z)mt rh(h + L \1 h/r)(vg/L_ng)_
3 12 4 p2
veK
h3o? /50| + ——atetle (3.34)
hnrzwp

This equation is parallel to equation (3.33) for the lateral
stiffness sé that statements made previously concsrning the
lateral stiffness apply here also.

Other 1lnertias effects.- The preceding dlscussion of

inertia effects suggests that one effect of tire inertla 1ls

to change tire stiffness at high speeds and to introduce a

'gyroscopic moment . Howevef,"it should bé;recognized that

there are other inertia effects which wlll come into play
probably at velocitles close to those where the previously
mentioned inertia effects arise. For example, the baslc
kinematlc equatlon 1s based on the assumption of an exponen-
tially distorted tire equator line corresponding to a defil-
nite "static" relaxatlon length. This assumption can be

safely assumed to be valid (if it is valld at all) only for
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conditlions where the elastic.forces in the tire predominate
over the inertia forces. Where inertls forces are strong
in comparison with elastlc forces, 1t'1s at least doubtful
whether the relaxation length remalns constant.

While there are undoubtedly other effects of tire
inertia in addition to the ones just dlscussed, 1t appears
probable that the importance of many of these effects, dis-
cussed or not discussed, can be assessed by means of the
following summéry statement. The major effects of tlre
inertia on the rolling motion appear to come into play at a
Qelocity of order of magnitude L0O V¥ fps = 270 Jr mph
where r 1s expressed In feet., For velocities considerably
mmaller than this veloclity, most lnertla effects can probably
be safely neglected; for velocities of thls order of magni-
tude or higher, 1t 1s possible that ﬁany of the baslic
assumptions of this paper, and of most other papers on thils

subject, may be subject to considerable error.
- Hysteresls Forces and Moments

In addition to the forces and moments Jjust discussed,
there are also certaln damping forces and moments which arilse
as a consequence of the sometimes considerable hysteresls
losses which arise in the distortion of elastic tires. It

appears probable that these hysteresis effects are only
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important at low rolling speeds (more specificly for low
ratios of v/%r)yl However, for slmple types of landing
gears attached to a rigld alirplane, the low speed rolling
éondition could be the c¢ritical condition for design pur-
poses; thus 1t 1ls questionable whether the hysteresis effects
can be neglected for accurate design calculations. On the \
other hand, neglect of the hysteresis effects would usuallyj
lead to conservative results but still the degree of con- §
servatlism might be excesslve.

Apparently the only significant attempt to desal with
this hysteresls problem has been given by Schlippe and
Dletrich, who have presented some plausible assumptions for
dealing with hysteresis effects, but have not attempted to
solve the relatively complex problem of exploiting these
assumptions In d_et‘.ail.“-2

A treatment of this hysteresis problem 1s considered

beyond the scope of the present Investigation.
Structural Forces and Moments

The precedlng discussion covers the major ground

forces and moments end the gyroscopic moments eacting on the

1 ,
b H. Fromm, op. cit,

L2 B. von Schlippe and R. Dietrich, "Das Flattern
eines mlt Luftreifen versehenen Rades," op. cit.
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wheel., In addlition to these forces and moments, there exist
the forces and moments acting on the wheel from the support-
ing structure. These will be designated as Fys for the

net structural force parallel to the Y-axls, M for the

xs
net structural lateral tilting moment and M,, for the net
structural swiveling moment. These forces and moments
Include shlmmy damper moments, spring restoring moments,
inertia forces in a landing geér structure (exclusive of the

wheel 1lnertla force) and spring forces arising from the

flexiblility of a landing gear strut or of the fuselage of an

alrplane. 1In general, the majority of these forces and
moménts can probably be consldered to be approximately
linear in behavior except for shimmy damper moments, howsever,
even these moments can be replaced as a first approximaﬁion
by equivalent llnear damping moments by using the method
developed by Jacobsen.h5

Within the scope of a linear theory, these structural
forces and moments will depend in a linear manner on the

wheel center coordinates 7“5’ ® &and Y according to expres-

P T1(Dg)nzg + Ta(Dg)e + Tz(Dg)Y (5}55)

T), (Dg)ng + Tg(Dg)e + Tg(Dy)¥ (3.36)

MX s

L3 - |
S. Timoshenko, Vibration Problems in Engineering.
%ecog% %iition; New York: D. Van Nostrand Company, Inc., 37, |
p . - [ —-

j
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Mzg = T7(Dg)ns + Tg(Dg)e + Tg(Dy)Y (3.37)

where the T's are functions of the differential operator
D¢, sometimes called transfer functions, whose specific

forms will depend on the type of landing gear in question.,

il
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CHAPTER IV
EQUATIONS OF MOTION

The equations of motion for a rolling wheel are

derived and briefly dlscussed in this chapter.
Derlvation of the Equations of Motion

To obtalin the first equation of motion, the sum of
the lateral forces acting on the wheel parallel to the
Y-axls 1s set equal to the corresponding inertia reaction.

This gives the equation

Fys * Ka(70 = M3 = r3v) - Ky =mD2ng  (4.1)

Y

(see equations (3.1) and (3.8)), where the first term in
equation (L.1) is the structural force, the second term 1s
the net force on the wheel resulting from tire elastic and

Inertia forces (K, = Ky + 8K, where AK, 1is given

static
by equation (3.33)), the third term 1s the lateral ground
force resulting from tire tilt and my, 18 the mass of the
wheel (lncluding the tire).

By setting the sum of the lateral tilting moments
about the wheel center equal to the inertia reaction, the

equation

29

fl
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Myg + P{c)\yo + (1 - C-A)ﬂB + [(1 - G)‘)PB - C.Y]Y - ﬂ3} +

[Kx(yo - M3 - r3v) - Kyy|rg - I vDe/r = I D2y (h.2)

1s obtained (see equations (3.1), (3.8), (3.9) and (3.15)),
where the first term in equation (4.2) is the structural
amount, the second term 1s the moment resulting from the
vertical ground load, the third term is the moment of the
ground forces resulting from tire lateral distortion and
t1lt and the fourth term 1s the gyroscopic moment resulting
from the swiveling motion of the wheel and where I

XW
the moment of inertla of the wheel about an X-axis (or a

is

Y-axis) through its center.

By setting the sum of the swiveling moments about the

wheel center equal to zero, the equation

Mzg + Ka(v'lntyo -8) - TvD (3¢ - ns - r3Y) -

T = 2
1s obtained (see equations (3.5), (3.12) and (3.14)), where
the first term 1n equation (L.3) 1s the structural moment,
the second term is the net moment resulting from tire elastic
and Inertila forces exclusive of the gyroscoplc moment due to

tire lateral distortion (K, = K

a + 8Kq) where AKj

astatic
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1s given by equation (3.34), the third term s the gyroscopilc

moment resulting from tire lateral distortion, and the fourth

~term 1s the gyroscopic moment resulting from wheel lateral

tilt,

Equations (L.1), (4.2), (L4.3) and (2.16) or (2.20),
together with the three auxiliary equations (3.35) to (3.37),
are the baslc equations of motion for the motlon of an B

elastlc wheel and if the T-functions In equations (3.55)7267W

(3.37) are known for a particular landing gear, these

equatlons can be solved simultaneously to determine the

rolling behavior of the gear.

Next the question arises as to how to most profité%iy;
solve these equations for practical landing gear problems,
There are essentlally two methods of attack, elther exact
or approximate solution:of the equatlions. In regard to
exact solutlions, it should be noted that in the past such
solutions (omitting some of the less important previously
mentioned terms) have been made only far the simplest case
of a rigld swiveling landing gear attached to a rigid fuse-
1s:1ge.l~d’ﬂj'LS While the exact solution of these equations

B. von Schlippe and R. Dietrich, "Das Flattern
eines mit Luftreifen versehenen Rades," op. cit.

hS J. Rotta, op. cit.
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for more complex problems does not appear to present any
Insurmountable difficulties, it can, however, lead to the
solution of relatively complex transcendental equations such
that 1t 1s worth while to examine the possibllity of finding
simpler systematic approximations to the genersal egquatlons.,

A second reason for investigating systematic approxi-
mations te the summary theory arises in connectlion with the
correlation of the summary theory with the other exlsting
theories. Superficially, in its present form, the summary
theory does not too closely resemble most of the other
exlsting theories. However, by making use of the approxi-
mations which follow, it 1s fairly easy fo see the correla-
tions between the different theories.

The next chapter of thils paper 1s concerned with the
problem of establishing a series of systematic approximations
to the general eguations and the chapter following that one
deals with the correlation of these approximations with the
other exlsting theories of wheel motion. To expedite some
of the discussion in these later chapters, 1t 1s convenlent
to digress slightly here to consider one speclal exact solu-
tlon of the general equations, namely, for the case of

steady yawed rolling.
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Steady Yawed Rolling

Consider the case of an untilted wheel which rolls at
constant velocity at a constant small swivel or yaw angle,
For this special case, yo(x + h) = ¥o(x) = constant,
® = constant and Ny =y = 0 8o that equations (2.2) (with
v, for yg), (2.16), (L.1) and (4.3), respectively, reduce

to the relations

.AO = 3o (bdy)
Jo = (L + h)e = 1,6 (h.5)
FY! + K’\YO =0 ()-‘-06)

=
1
tal
L« o]
{]
o

()4--7)

By comblnation of equations (L.L}) and (L.5) the tire lateral
distortion 1is found to be

By combination of equations (4.5) and (4.6) the lateral force

on the wheel is found to be

Fyg = =11K»0

i
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The quantity Lle’ which represents the lateral force per
unlt yaw angle, is an important tire characteristic which 1s
called the cornering power or lateral guldlng characteristic
of the tire. Later in thls paper, it is found convenient

to represent this quantlity by a single symbol N where
N = 1K, (L.9)

Another property of the steady yawed rolling condition
which 1is of some Iinterest 1s the distance of the center of
pressure of the lateral force behind the center of the tire,
which is sometimes called the pneumatic castor e = 'Mzs/Fys'
This quantity, according to equations (L.5) to (L4.9), 1is

equal to

€ = My /Fog = Kg/N (L.10)
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CHAPTER V
SYSTEMATIC APPROXIMATIONS TO THE SUMMARY THEORY

In this chapter, a discussion 1s given of the possi-

bllities for simplifying the preceding equations of moti
and a series of systematic approximations to the general
equations are set down.

First it 1s noted that all but one of the equatlons
of motion (equations (3.35) to (3.37), (L.1), (L.2) and
(4.3)) are usually simple linear equations and present no
great d1fflicultles. The exception 1s the kinematlc equation
which was originally transcendental in form (equation (2.16))
and was later expressed in the form of an infinite seriles of
linear terms (equation (2.20)). The most promising way to
slmpllfy this equation appeared to be to assume that the
serles expansion In the infinite serles form of the kine-
matic equation (equation (2.20)) 18 a rapldly convergent
series such that all terms in the series above a gertain

value of n can be neglected. The question as to what 1is

the rapldity of convergence of the series and Its signifi-

cance cannot be fully answered without a knowledge of the
particular landing gear configuration considered. However,
some insight 1Into this question can be obtained by consider-

ing thg case of purely sinusoldal oscillations of the form
0. X

Yo = @ 1" where the quantity v, will be called the path

65
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frequency. Substitutlon of thls expression into the infinite

serles In y5 1in equation (2.20) ylelds the result
-
(1 + j{gznnn)yo = (pln + 1p2_)yo (5.1)
n=
where

1-12'012'*'1&\)1&".--

Pla

>(5.2a)

Zlol - 13013 + 15015 - . .

H

Pra

o

Another form for the p's can be obtalned by substituting
b,x
the relation y, ® © 1into equation (2.16). This gives

the results

:

= ¢cos olh - Lol sin nlh

el
[
8
|

> (5.2b)

Pow sin v;h + Loy cos v3h

\J
The rate of convergence of the p-series of equation (5.2a)
can be tested for any glven frequency by substituting numeri-
cal values of L, h and ©; Into equations (5.2a) and
(5.2b) and comparing the individual terms. A typical com-
parison is shown in Figure | for the conditions L = 0.8r,

and h = 0.,5r. The abscissa of this plot represents the
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oscillation's wave length 8 = 2nfoy and the ordinate

- represents the p functions. The term lebeled py, means
that this curve represents the sum of the first two terms in
the Py, series and simlilarly for the other terms. (The

~approxlimation letters are explalned later.) From this

{Kgﬁgure 1t is seen that the series converge very rapldly.
From a purely quelitative point of view, the Figure might be
consldered to indicate that for dealing with shimmy wave
lengths greater than approximately four tire radil, the use
of two terms in each series fairly well represents the‘exact‘
varlations, for weve lengths greater than approximately
6 radil, one term in the P, serles and two in the P,
serles are sufficlent and for wave lengths greater than about
20 radil, one term in each serles 1is sufficient. (The numer-
ical values of wave length cited here, of course, only
represent order of magnitude and are not necessarily directly
quantitatively significant.) To correlate these observations
with the conditions of wave length likely to be encountered

in practicé, it can be stated that the experimental data of
Schlippe and Dietrichhé’MT and Kr:lnt:rowftt:::,L"8 which are

40 B. von 8chlippe and R. Dietrich, "Das Flattern
elnes bepneuten Rades," op. cit,

L B. von Schlippe and R. Dietrich, "Das Flattern
eines mit Luftrelfen versehenen Rades," op. cit.

L8 Arthur Kantrowitz, op. cit.
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probably fairly typical iIn this respect, demonstrate wave

lengths which are about 4 radiil long at zero rolling velocity

and which Increase with Increasing rolling velocity. Thus
i1t appears possible that the use of only a few terms in the
series-expansion may lead to a reasonable predictlon of
shimmy characteristics for practlical operating conditions.
With the preceeding considerations in mind, the
followlng approximations to the general wheel métion equa-

tions of the summary theory were established.
Approximation A

As a first approximation for the general kinematic
equation (2.20), all terms for n> 3 are neglected. This

gives the approximate differential equation
= Lh
Yo * 1DV * 12D%yg + 13D3yp = mg + 130 - &2y (5,3)

This equation, together with all of the general force and
moment equatlons previously discussed, is referred to here-

after as approximation A.

Approximation B

A second less exact approximation for equation (2.20)

1s obtalned by letting 1, =0 for n>2. Thus
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2 = an -&‘h.
Yo + ¥1Dyp *+ 12D°yg = Mg + 1,6 = Y (5.4)

This equation will be referred to as approximation B.
Approximation C1l

Another cruder approximation for the general differ-
entlal equation (2.20) 1s obtained by neglecting all terms
in the serles for n > 1. This gives the differential

equation
- slh
Yo + 11Dyg = mg + 116 - 2= Y (5.5)

which will be referred to as approximation Cl.
Approximation C2

As a slight simplification of approxlimation Cl, the
relatively wnimportant, or at least questionable, term
involving ¢ may be omitted in equation (5.5). This gives

the equation
Yo + 13Dyg = Mg + 130 (5.6)

which will be referred to as approximation C2.

With the ald of equations (2.2) and (3.4), equation
(5.6) can be written in the more easily interpreted form
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Xo = -Lla (507)

or, by using in addition equations (3.1), (3.3) and (L4.9), as

_ N - Fy% - NMzq
A, = - a = = - (5.8)
0 K; -K;- Rxa

which shows that for this approximation, the lateral dils-
tortion of the tire 1s directly proportional to the angular
distortion.

The physical meanling of thls approximation can be
obtained by considering that equation (5.8) can also be
obtained by letting the ground contect semi-length h
approach zero in the general differential equation (2.20)
(as was previously noted by Rottah9) since all terms in the
serles for. n >1 and the tillt term contaln the multipli-i

catlon factor h. Then equation (2.20) becomes

o + LDy, = mg + Le (5:9)

or with equations (2.2), (3.4) and (5.9)

A = -La (5.10)

43 J. Rotta, op. cit,

[T
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Also equation (L.9) for the yawed rolling becomes
N = KL (5-115
and the combination of equations (5.10) and (5.11) glves
A =-goa (5.12)

which 1s the same as equation (5.8) for any given combination

of N and Kk' Thus essentially, when written in the form

of equation (5.8), this approximation C2 formally corresponds

to the assumption of h = 0.

In regard to the accuracy of results obtained from __

this approximation, 1t can be qualitatively stated that
reliasble results should be expected only when the neglected
quantity h is small with respect to the characteristic
length S8 of the rolling motion In question (for example,
the wave length of a sinusoldal oséillation). Fortunately,
this condition is at least sometimes satisfled for practiqii

rolling conditions.

Approximation D1

-

Before considering the next approximation, 1t should

be remembered that all of the terms neglected in the pre-

ceding approximations were multiplied by the tire semi-length

{4
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h, thus these approximatlons implled the assumption of pro-
gresslvely smaller and smaller tire ground contact length or

progressively larger and larger wave length. In order to

make further simplificatlons, 1t 1s necessary to make some

Silmplifying assumption about the other tire propertiles.,
Three such assumptlions are now made to further simplify the
equations of approximation C2. For the first approximation,

to be called approximation D1, the simplification
11 =0 (5.12a)

i1s adopted. Then 1t follows from equation (5.7) that for

finite a
Ag =0 (5.13b)
which 1s the basic equation for this approximation. Thus

for this approximation, the tire 1s free to twist but not to

deflect laterally. This, therefore, also implles infinite

lateral stiffness or

Ky = = (S.13¢c)

For the simplest form of wheel shimmy due to tire

elasticity and not to structural elasticity (considered later)
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approximation D1 does not provide accurate information. For

wheel shimmy due largely to structural elasticity ratherrthan
tire elastlicity, thls approximation may be of some valgg;m
actually most exlsting theorles corresponding to this approx-

imation have been developed for the primary purpose of con-

sidering the influence of structural elasticity on wheel

shlmmy. B -
Approximation D2

As a second simplification of approximation C2, the

assumption

could be adopted and the corresponding theory 1s designated

a8 approximation D2. From equation (5.7), it 1s evident

that thls approximation implies for finite A that

0

which in turn implles
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Thus for this approximation, the tire 1s considered as

torsionally rigld but laterally flexible.
Approximation D3

A third simplification of approximation C2 can be
obtalned by keeping the quantity 1, finite but considering
the tire to have both infinite lateral stiffness and infinite

torsional stiffness or

This approximation, which 1s deslignated as approximatlon D3,
thus représents the case of a rigld tire and consequently
also implles a = ko = 0.

The‘seven preceding approximations A to D3 now furnish
a cholce of seven simplified approximatlons based on the

summary theory and 1t remalns to determine which, if any, of

these approximations 1s the simplest one which can be used

for any particular tire motlon problem. While 1t 1is not yet

possible to give a cOmpletély satisfactory answer to this
question, some insight into the answer can be gained by com-
paring the varlous approximations with the other existing,

at least partly successful, tire motion theories which are

mostly closely related to these sapproximations. Such a com~

parlson 1s carried out in the next two chaptérs of this pgper}m
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CHAPTER VI
CLASSTFICATION OF EXISTING THEORIES

It is the purpose of thls chapter to briefly review
and evaluate the major previously published theorles of
wheelrmotion and to correlate these theories with the pre-
ceding summary theory of thls paper and 1ts approximations
wherever such a correlation 1s possible. To accompllsh thils
aim, each of the major previously published theorles 1ls first
considered individuslly in a separate subsectlon and after; -
ward an abbreviated overall summary classification ls pre-

sented in a tabular form.
" Individual Review and Evaluation of Exlsting Theorles

Schlippe~Dietrich theory.- The tire motion theory of

Schlippe and Dietrich?o’sl'52 of course, corresponds directly
to the summary theory of thils paper since the summary theory
was taken directly from their theory with only minor modifi-
cations. These modifications cover a more detalled conslder-

ation of some of the influences of lateral tl1lt asnd of tire

inertla forces and moments. It should be noted, however,

50 B. von Schlippe and R. Dletrich, "Das Flattern
eines bepneuten Rades," op. cit.

51 B, von Schlippe and R. Dietrich, Zur Mechanlk des
Luftreifens, op. clt.

52 B. von Schlippe and R. Dietrich, "Das Flattern
eines mit Luftreifen versehensen Rades," op. cit.
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that the Schlippe-Dietrich theory is more advanced than the
summary theory of thls paper In that it partly takes into
account the effects of the width of the ground contact area.,
This effect, &as was previously noted, 1s, however, probably
not of great practlical importance.

Rotta theory.- Rotta's tire motion theory53 correspands

to the summary theory of this paper since 1t is also based

on the Schllppe-Dietrich theory and represeﬁts a slight
extenslon of that theory to more adequately take into account
most of the effects of tire tilt and the width of the ground
contact area. No lnertia forces due to tire lateral dis-
tortion or centrifugal forces are discussed.

Bourcler de Carbon advanced theory.- Bourcier de

Carbon5h has developed two closely related theories of tire
motlon which are similar to approximations B and C2. The
first of these will be referred to as the Bourclier de Carbon
advanced theory and the second as the Bourcler de Carbon
elementary theory. The advanced theory will be discussed |

first.

Bourcier de Carbon's advanced theory uses 5 basic
tire properties which are correlated with those of the pres-

ent paper by the following relations

’3 J. Rotta, op. cit.

54 Chrlstian Bourcier de Carbon, op. clit.
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which were obtalned by comparing\this theory with the cor-
responding approximation B. The symbols of Bourcler de
Carbon are underlined and do not necessarlily bear any rela-
tion to any other not underlined symbols in this paper desige
nated by the same letters. While the first four symbols

bear a simple relation to those of the present paper, the
fifth symbol R bears a more complicated relation which is
worth some detalled consideration.

Bourcler de Carbon defined the tlre property R as
follows. If an untilted wheel 1s rolled forward while
exposed to a constant turning moment about a vertical axls
and with no side force, it will move in a clrcular path of s«
definite radlus; R 1s defined as the reclprocal of the

product of the turning moment and the path radlus.
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Unfortunately, however, thls constant moment clircle-rolling
experiment 1s not easlly performed. Therefore, the above
equation for R, which expresses R 1n terms of the more
easlly measured and more fundamental quantities L, h and
Kq s of inmportance for the use of the Bourcler de Carbon
advanced theory.

In regard to the subject of tilt, Bourcier de Carbon
omits many of the detalls considered in thils paper. For
example, he lmplicitly assumed K =c¢cy) = ¢

Y Y
the inclination angle of a landing gear x to be small

=§=0 and

(taking cos x & 1), However, these omltted tilt terms may
ve as Important as the terms considered; therefore, Bourcler
de Carbon's consliderations of tllt are incomplete.

For the benefit of readers of Bourcler de Carbon's
paper,?2 1t should be noted that there exist certain mis-
conceptions 1n the parts of that paper which deal with com-
parisons between theory and experiment. In particular, 1t
appears that some of the experimental data quoted by
Bourcler de Carbon from a paper by Schlippe and Dietrich®6
1s misquoted or misinterpreted. Consequently, Bourcier de

Carbon's conclusion that these experlmental data provide a

25 Christian Bourcier de Carbon, op. clt.

56 5. von Schlippe and R. Dietrich, Zur Mechanlk des
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remarkable check of his theory 1s not completely Justiflied;
actually these experimental data only provide an indirect
fair check of the theory. o

Greldanus theory.- Another theory similar to the pres-

ent approximation B, except for the influence of tilt, is

the theory of Greldanus.’! Greldanus considers the influence
of t11lt in much greater detail than does Bourcler de Carbon.
However, he salso falls to consider the force term propor-

tional to Ky3 thus his results also do not fully describe

- In addition, Greldanus's kinematic equation differs

from equatlon (5.L) for approximation B in that he has intro-

duced a slightly‘different term assoclated with tilting of

reads

2 - Y
Jo * 11D¥g * 1Dyg = Mg + 136 - Ip & (6.2)

It 1s seen that the difference of the &wo equations lies'}n
the coefficient of y. For approximation B (equation (5.4)7,
the coefficient 1s

L%E (Approximation B) (6.3)

o7 J. H. Greldanus, op. cit. -
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and for Greldanus's equation (after substltuting for 12

from equation (2.20))

(L + h/2)h

= '(Greidanus) (6.4)

If ¢ 1s set equal to (L + h/2)/L theﬁ the two coefflclients
are 1dentical; thus Greldanus's kinematic equation can be
considered to be a speclal case of the‘correSponding equation
of saspproximation B. ’

No further detalled discussion of Greldanus' theory
is giﬁen in this paper for the reason that lack of a trans-
lation of Greldanus' paper prohlblits a complete understanding

of some parts of the paper,

Bourcier de Carbon elementary theoryﬁégBourcier de

Carbon's elementary theory corresponds to approximation C2

of this paper except for the minor shortcomings which were
discussed in connection with the Bourcler de Carbon advanced
theory. The only difference in Bourcler de Carbon's two
theorles 1s that the coefficlent R 1n the elementary theory
i1s taken as infinity as compared with the value gliven by
equation (6.1) for the advanced theory. This corresponds to
the assumption 1, = 0 which was previously made 1n passing

2
‘from approximation B to approximation C2 (compare equations

58

Christéin Bourcier de Carbon, op. cit.
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(5.4) and (5.5)). The physlcal significsnce of R = w is

obvious from equation (6.1). It means h = 0.

Melzer theory.- The Melzer theory for tire motion>9

1s also similar to that of approximation C2 except for

details of the tilting process. Melzer's kinematic equatioﬁ '
1s 1dentical with that of approximation C2 and of Bourcier
de Carbon's elementary theory. However, Melzer's thgg;iuy
differs in that it takes the moment due to tire twist as
propor§10n31 to the swivel angle (-8) rather than the total
tire twist angle (Dyg = ). Logically, this assumption
would appear Justified only If y' << ©. This, however, is
not true in general. 1In connection with this point, it 1s
iInteresting to note that for the simplest case of wheel
shimmy (see Chapter VII, Case I), the Melzer approximation
leads to one of the same stabllity boundaries and to the

sameé limiting high speed shimmy frequency as the more correct

approximation including the term in Dy,. This restricted

agreement, however, hardly justifies the use of Melzer's

differ with respect to calculations of the divergence of the
shimmy oscillations and with respect to another stability
boundary. Moreover, for simple problems, the Melzer approxi-
mation 18 not significantly easier to solve than the more

correct form Including the Dy, term,

29 M. Melzer, op. cit. R
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Moreland advenced theory.- Moreland has proposed

three versions of a tire motion t:heor:,r.éo’é1 The most

advanced verslon of these 1s governed by the equation

@ + C1Dta = -Ap/ly = -Fu N (6.5)

or
ClllvD2y0 + llpyo + Jog = CqlvDe + (ll - a)e (6f6)

where C, 18 a time lag constant. This theory corresponds
to a generalizagion of approximation C2 (with pneumatic
castor neglected, thaf 1s, € = 0) to the extent that for
C1 = 0 equation (6.6) 1s identical with the basic equation
for approximation C2. However, with C; # O this theory
1s not directly compatible with the summary theory and its
approximations,.

Moreland uses the following type of reasoning to estab-

lish this equation. First, for the case of steady yawed

rolling, it 1s known that a yaw angle a 1is developed as a

consequence of the applicatlion of a lateral force Fii;;

60

Willlam J. Moreland, "Landing Gear Vibration"_g.cit,W
61 William J. Moreland, "The Story of Shimmy", op. cit,
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according to the.relation
a = -Fyx/N — (6'7)

which 1s the baslic equatlon for approximation C2. However,
for the dynamle rolling case obviously'this equilibrium yaw
angle cannot be established immediately upon application of
a glven slde force; rather, a finiteramount of time will be
required for the equilibrium yaw angle to develop. Moreland
has attempted to tske thls finlte time lag Into account by
modifying equation (6.7) to the new form of equation (6.5).
In the latter equation, the constant C1 1s a measure of
the time lag of the-yaw angle behind the applied force Fy%’
This time lag term Introduced by Moreland'does not
correspond exactly to eny of the terms in the summary theory
and to thlis extent Moreland's advanced theory 1s apparently
Incompatible with the summary theory. However, a partial
reconciliation of the two theories can be obtalned by recog-
nizing that Moreland did not consider in detall the tire
Inertla forces and moments due to tire distortion. A pos-
slble interpretation of the time lag term is that 1t may pro-
vide a simplified expression for these inertia effects, In
partlcular, 1t 1s Interesting to note that, as will be shown
later, the gyroscoplic moment due to tire distortion produces

some effects similar to those produced by the time lag term.
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In regard to the queétion of the relative merits of
the introduction of the overall time laeg term and of the
detalled inertia effects, it appears that this question can
be declded only on the basis of relative agreement wlth
experimental data. However, apparently the only existing
experimental data contalning time constant information which
i1s sultable for such a comparison 1s Moreland's data62 which
has not yet been published in detall. Consequently thls
paper cannot present a quantitative evaluatlon of the rela-
tive merits of these two approaches.

Moreland intermedlate theory.- As a simpler approxi-

mation for the advanced theory, Moreland has stated®? that
the influence of the time lag term in the kinematlc equation
for his advanced theory (equation (6.5))can be approximated
for the usual range of shimmy frequencies by using the

simpler kinematic equatlion
Lot a = A (6.8)
Insomuch as approximation C2 has the kineﬁatic equation

l.a = =-A (5.7)

5 1b1d.

63 Wwillism J. Moreland, "Lendlng-Gear Vibration,"
op. clit.
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and approximation D2 has the kinematic equation (5.14b),
which could be written in the form -

oq 3 "Xo

i1t then follows from a comparison of these last three equa-
tions that Moreland's intermediate theory 1s a theory which
falls somewhere between approximations C2 and D2. Since
Moreland has not offered any concrete justification for this
approximation, it does not appear warrented to dlscuss it -

in further detail in this paper.

Moreland elementary theory.- Moreland's most elemen-
tary theory correspénds directly to approximation D3, the
case of a completely rigld tire, except that i1t, like More-
land's other two theories, does not take into account the
pneumatic castor (e = 0).

Temple elementsry theory.- Temple has proposed an

elementary theory for the motion of tires which is identlcal
with approximation Dl.6h Temple has chosen the most genersal
the tire torsional sitffness K; (indirectly interpreted as
an Increase in trail) and the cornering power N.

In regard to the general applicabllity of Temple';“ ]
elementary theory, 1t should be noted that this theoryrwasijj’

4 ¢, Temple, RAE Report No. AD 3148, op. cit.
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developed before there was avallable experimental evidence
pointing to the need for more detailed considerations of
tire lateral stiffness. Subsequently, Temple has indlcated
a need forrmore refined conslderations of the tir665 and has
developed independently a theory sirllar to the theory of
Schlippe and Dietrich. (This theory is as yet unpublished
but has been partly discussed by Hadekel.)66

Maler theory.- Maler has proposed a simplified theory

similar to approximation D1 with the difference that he makes
the added assumptlon that the tire torslonal stiffness K,

is zero.67 In regard to thls theory, like that of Temple,

1t should be noted that the theory was developed before

there exlsted much experimental evidence pointing to the

need for more refined considerations for shimmy behavior,

Taylor theory.- Taylor, in a brief paper,68 suggested

another tire motion theory which corresponds to approximation

D2 except that detalls of the tilt process are omitted.

5 ¢. Temple, "Note on American Work on Kinematlic and

Dynamic Shimmy," RAE Report No. AD 4056, 1940, 9 pp.

66 R. Hadekel, "The Mechanical Characterlistics of
Pneumatic Tires," S. and T. Memo. No. 5/50, British Minlstry
of Supply, 1950, 16 pp.

67 g, Maler, op. cit.
68 J. Lockwood Taylor, op. clit.
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Kantrowltz and Wylle theorles.- The preceding

L

"theories for tire motion, which seem to cover most of the
known theories, may all be consldered as closely related to
the summary theory of thls paper. However, there exist two
other well known theorles by Kantrow1t269 and Wylie7o which
apparently cannot be derived from the summary theory and
thus cannot be accurately classified here with respect to
the other theories, The best that can be said for their
classification 1s that they possess some of the merits of
approximation B but 1n other respects are iInferior to
approximation D1. To point out the deficiencies of these
two theorles, it 1s sufficlent to consider two simple cases
of tlre motion as follows.

The fi?st case to be considered 1s the steady stralight
line motlon of a nonswiveling rolling wheel which is not
yawed with respect to its direction of motion and which has
no lateral forces or moments acting on the wheel. Obviously
for thls case, there will be no lateral distortion of the

tire or

>
]
o

6 :
9 Arthur Kantrowitz, op. cit.

70 Jeen Wylte, op. cit.
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On the other hand, Kantrowitz's basic kinematic

equation, which is

Ag * LDAg = LO - 1,D8 (6.9)

glves for this steady unyawed case (with DAy = De = 0)

Ag = L8 I

which 1s obviously Incorrect since it Implies that the
lateral distortion of a stralght-rolling wheel, which actua;i;::;w
ly must be zero, depends on the cholce of the coordinate axes
to which 6 1s referred. Only for the speclal case where -
the wheel runs along the reference axis (that is, for o = 0)
1s Rantrowitz's theory correct in this respect and In an
actuél shimmy problem, this 1is possible only for the case of
zéro trall; thus Kantrowitz's theory cannot be necessarily
expected to give reliable results for trails different from

zéro. Thus it must be concluded that Kantrowitz'sﬂigggglﬁéégﬁﬁgﬁgﬁr

at least of doubtful value for practical shimmy calculations.

To evaluate the Wwylie theary, consider the case ofw

steady untilted yawed rolling of a wheel moving parallel to

the X-axis, It 1s obvious that the lateral distortion of
the tire Ay will depend only on the swivel angle 6 (6 = a)

and in no manner will depend on the absolute laterasal
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dlsplacement of the wheel fige On the other hand, the basliec

équatlion of Wylie, which in the present termlnology 1is
Yo * LDyg = Lo - 1,06 (6.10)

gilves for thils steady case (where Dyyg = D8 = 0) the relation

Yo = L8 or by using equation (2.2)

This equation states the obviously Incorrect conclusion that
the tire distortion 1s dependent on Ny or, in other words,
that 1t depends on the cholce of the coordinate axes. Thus,
only for the speciél éase Mo = 0 1s Wylie's theory plausf
ible In this respect and t?is implies that the reference
axls must be taken to pass through the path of the wheel.
Since thls condition 1is satisfied In an sctual shimmy motion
only for the special case of zero trall, it must be concluded
that Wylle's theory, 1like Kantrowitz's, cen at best be fully
valld only for zero trail and that consequently this theory
1s also of doubtful value for practical shimmy calculations.

Other theories.- In addition to the just discussed

theoretical papers deallng particularly with the subject of
landing gear shimmy, there exist a number of relevant papers

which are either largely of historical Interest, which deal
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particularly with automobile shimmy problems, which deal
only briefly with landing gear shimﬁy problems, which deal

with other tire motion problems such as yawed rolling and

verring off or ground looplng, or which desl with the deter-

mination of tire stiffness parameters. The reader is refer-
red to the bibliography.prepared by Dengler, Goland, and
Herrman (% for a substantlally complete listing and brief
discussion of moét of the‘papers in thls class,

Of particular historlcal interest among the work not
considered here in detall are the work of Broulhlet?® and
the work of Fromm(? These two Investigators independently
were apparently the first to recognize the Importance of tire
lateral distortion and cornering power in regard to the wheel
shimmy problem. Taking these factors into account, both
authors developed tire motlion theorles whose kinematlc rela-

tions correspond to that of approximation C2 of the present

paper.
Tabular Classification of Existing Theorles

In order to permlt easier visualization and comparison

of the merlts of the varlous theories discussed, the major

71

Max Dengler, Martin Goland and Georg Herrman,
op. clt.

2
7 M. G. Broulhiet, op. clit.

7 m, Fromm, op. clt.
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assumptions of the various theories of tire motlon sare col-~
lected together in Table I. Thls table lists the natﬁre of
the assumptions made in regard to the primary tire parameters

N, Kq, Kl’ ¢ and Ln for each of the theories discussed.



93

*IoqUNU S3TUL B S93WOTPUT J Toquds Syl :o30N

SUOTSNTOUOD SNOSUOLIS OF PeIT UBd SSTI0IY 0 o!{ O Al & X)L ATTAM
sgsUy JO Y30q 0x9z 0% Tenbs qo0u TTeI} I04 0 o| o} g4 &| I|d Z}TAOTIUEY
3IT9 PFITI ATTPUOTSIO] SSUMSSY 0 0| O] »[0| = dje J0TA8]
I3 PITTI ATTBINBT goumssy o} o| 0| 0|0| O] =|d ISTeN
SIT3 PIITI ATTBISYET soumssy 0 0| O O{d| J| =|d LrgqusmaTs STAWS[
8IT3 PTITI LTTHUOTSIO} PUB ATTBINBT Saumssy 0 O| o] d|0| O] e|w £requoweTe PUBTIION
onrea T7 o88xeT Arswexjxs soTTdw] 0 0| O| &{0| O I|d& 99BTPIWIDUT PUETSION
WI} JUBLTUCD SWTG S3ONPOIIUT o} 0| Oo| J|0| O A4 POOUBADE PUBTIION
ST3uB TSATMS = STJUB 3STM3 SJIT3 SoUMSEY o} o| O d|ld| Al A4 JISZTONW
0 0| 0] J|d| 4! g|d| ArsjuswaTs uUOqIE) 9P JISTIINOFL
0 ol I d|d| 4 g I SUEPTaIH
0 o 4| LA I LI PSOUBAPB UOQIB) IP JSTOINOY | -
g I | &' g dld| ©I30Y¥ PUB YITIIRTq-2ddrTus
SIT3 PISTJI ATTBUOTSIO) Pus ATTBIS39] SSUMSSY 0 0| O I d| = wew ¢q uoTgeuwrxoxddy
3IT% PTFTa LTTBUOTSIO) SauUMsSsy 0 ol O @ X| o J|e 2aq uotrawvwrxoxddy
8IT3 PISTI ATTeIoqBT SoUmMssy 0 0l 0f O/ d| d| = d 1q uotryewxoxddy
! o} 0 O Jd| I ]I g0 pue 1) suctjewixoxddy
0 0 I L, &| I I|& g uotgewtxoxddy
0 I 4 JJd 4 J)d v uotgeupxoxddy |
J I d gd) I )4 Lrosyy Arsummg
SYTBmSY € <u U |29 Te3 PG N Azosyy,

3 Lo
R N

NOTIOW LI 40 SHTIYOHHL SNOTHVA HHI ¥OJ SNOLLJWISSY AHVWIMA

I IEVL

b




-

®,

CHAPTER VII
APPLICATION TO WHEEL SHIMMY PROBLEMS

In the preceding chapters of thls paper, a set of

basic differential equations for the motlion of an elastic

~ wheel have been derived and have been compared with the

corresponding equatiohs of most of the previously published
theorles. These comparisons have indicated that, from a
mostly qualitative polint of view, the:summary theory of this
paper and the systematic approximations to it Iincorporate

the major merlts of the existlng theories of tire motion and
avold some of thelr disadvantages. However, 1t still remalns
to investlgate how to best apply the theory to specific '
landing gear problems, to investigate the question of the
absolute or quantitative accuracy of the summary'theory and
of the other theorles and, if the summary theory be found
satisfactory, to establish the simplest systematic approxi-
matlon to 1t which wlll glve rellable informatlion regarding
any partlcular problem In tire motion. The best way to
accomplish these varlous aims appears to be through the dls-
cussion of the shimmy of several particular landing gear con-
figuratlons and such a discussion 1s given in this chapter.
Two particular landing gear configuratlions are discussed.
These two conflgurations and the reasons for their discussion

are described brlefly as follows,

ol
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Description of Partlicular Cases Considered

The first landing gear conflguration consldered,
which 1s designated as Case I, 1s 1llustrated in Figure 5.
It conslsts of a rigid landing gear whose only degree of
freedom other than tire dlstortion 1s rotation of the wﬂégigmvww
about an inclined swivel axls., Thls particular configuration
1s chosen for the reason that most of the exlsting experil-
mental data have been obtalned for such a sonfiguration.
Thus, in connectlon with this configuration, 1t is possible
to ddscuss and evaluate the summary theory, 1ts systematle =
approximations, and the existing theorles with respect to

agreement wlth experlment In regard to the varlous Important

characteristics of a shimmy motion such as stabllity boun-

daries, shimmy frequency and divergence.

The second landing gear configuratién consldered 1s
the case of an untllted landing gear possessing two degrees
of freedom aside from tire distortion. This landing gear
configuration, which is 1llustrsted in Figure 6 consists of
a wheel free to swivel but not to tilt which turns about a
rigid vertical swivel axls, this swivel axls being attached :
by a spring k to the supporting structure. (This sﬁring is
an ldeallized representation for the lateral flexibility of

an actual landing geer strut.) This Case II configuration fs

discussed for two purposes, first to give an 1llustration of
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the effect of structural elasticlty on wheel shlimmy behavior
and second to provide an example which 1s better sulted than
Case I for bringing out the reigfive merits of several of
the systematic approximation theories for a case Involving

structural flexiblility.
Case I

General derivation.- In this sectlion, the baslc equa-

tion of motion 1s derived according to the summary theory
for the Speéial case of an Inclined rigld swivelling landing
gear (Case I), which 1s 1llustrated in Filgure 5. This equa-
tilon of motion could be obtalned by making use of the pre=
viously derived equations of motion for the completely
general case; however, it is simpler to derive 1t here sepa-
rately In a slightly different form for this particular prob-
lem,

The geometric quantities which enter the discussion
of this particular landing gear are Indlcated In Figure 5.
This gear has a swivel axls lying iIn the XY-plane and 1is
Inclined forward from the vertlical Z-axls by a constant angle
k (see Filgure 5). The perpendicular distance a Dbetween
the center ground contact polnt O and the swlvel axis 1is
called the trail. The swlvel axls 1s assumed to move with
constant veloclty v along the X-axls without lateral motion

from the XZ-plane,
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Rotatlon of the wheel structure about the inclined
swivel axls by an smount ¥ results in a component of angu=-

lar rotation about the vertical axlis € of magnitude
@ =¥ cos x (7.1)

a component of rotation about the X-axls «y (tilt) of mag-

nltude
¥ = =¥ 3in «x (7.2)
and a lateral deflection Mg ©of magnitude

ﬂo= -a' (7-5)

where all angles except x are considered small.

The sum of all moments about the swivel axls must
equal the Inertia reaction J;.thv = Ivsza& where I* is
the mﬁment of inertia of the wheel structure (including the
wheel) about the swivel axls, The moments about the swivel
axls are assumed to consist of the moments resﬁlting from
the previously discussed forces and moments arlsing from tire
distortlon and ground -locads plus the moments applied to the

wheel by the supporting structure which are assumed to con-

sist of a restoring spring of moment p¥ and a linear
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damper of moment gD ¥ = gvDy, where p and g are
constants. Thus summation of the moments about the swivel

LY

axls gives the differential equation

-[Fl(yo - mg) - KyY|a = Fp sin x[}xyo + (1 - cying - cYﬂ +

K, cos ‘(DYQ - 98) - TV2 cos :D(yo - no) - p¥ -

a

gvD¥ = I voDy (7.4)

where the first term ls the total ground force due to tire
lateral distortion and tilt (see equations (3%.1) and (3.8))
times its moment arm a; the second term 1s the vertical
force times 1t moment produclng fraction sin x times its
moment)arm (see equation (3.9)); the third term is the
moment about the Z-axls due to tire twist (see equation
(3.5)) corrected by cos ¥ for the component about the
swivel axls; the remaining terms oﬁ the left hand slde repre-
sent the gyroscopic torque due to lateral tire distortlion
(see equation (3.12)); the spring restoring moment and the

linear damper moment. Now by making use of equations (7.1)

to (7.3), equation (7.4}) can be written in the form

A)D%y + AyDy + Azy + BiDyy + Byyp = 0 (7.5a)
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where
e
, A1=Iv"2
A2 = avv2 cos kK + gv
Az = a° 2 (7.5b)
5-&K,\+Kacosu+p+p' >7.5
B, = =X + Ve
1 T K, cos & Tv- cos &
82 = akKy\ + osz ain x
s/
and

P = 8Ky sinx = aF, sin x + acyF, sin x + CyFz sin? x

(7.5¢)

The general relation between ¥ &and Yo for this case 1is
found by substituting for mg, ¥ and 6, accordling to
equations (7.1) to (7.3) in the general klnematic equatlion
(2.,20). Thus

7 n Lh
Yo * Eil 1,D"yg = ~a¥ + 1i¥ cos Kk + ﬁ;_.y sin x

or abbreviating

Q

]

—

+
i
F

tan = (7.6)
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and rearranglng
. » [
(61) cos x - a)¥ = y5 + Z:; 1, D%yp = > = 1Dy (7.7)
n= n=

since LO = 1. Differentlating this result glves

_ - -
(Gll cos k - a)Dy = E_ z’nDr1+1yO =Z ln_anyO (708)
n= n=1
and similarly

(ozl cCos kK = a)DZV = Ei;:zn-anYo (7.9)
n:

Substitution of these relations into equation (7.5) and

multiplication through by e 1; cosx - a glves

4
(o4

»
AN n n
Ay S ln-2 DRy + Ap ;i 1,10y * A5§%_ 1,D%g +

n=2

By(0ly cos ® = a)Dyy + By(91) cos® - a)yy = O

Finally after adding all terms of 1like order, substituting
N = 1,K, (equation (4.9)), substituting for some of the

A's and using equation (7.6), there results the equation

>
F D', . =0
n=0‘ n 0
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where

2

o
(@]
]

gaN cos x + Ka cos™ k + p + p. + u,

Fl = aly + a'k, cos x + Pl + Rzll + gv + GllTVZ cos g

Fn ™ Ajln o * A2l y + Azl n> 2 :>
and
u, = ¢y F, sin n(oly cos x - a)

a'=a+(l-a)1,1003l =a-£—£—h—slrxu

(7.10)

Equation (7.10) provides the general differentlal
equation of free motion for the system of Case I according
to the summary theory. The corresponding equations for the
systematlc approximations A to D3 can be easily obtalned
from this equation by setting the appropriate la's and
€, Ky, Kq» and N equal to zero or infinity according to
the procedures outlines in Chapter V., For exampls, for"
approximation C2 the differential equation 1s obtained by
letting 1, =0 fao n>1 and ¢t = 0, in equation (7.10).

The following differential equation is thus obtained for

approximation C2.
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EgD’yo + EqD?yg + EpDyg + Ezygp = O e
where

E, = Tyvoly
Ey = IVVZ + (arve cos n + gv)Ll S

> = aN + 8K, cos x + ply + pLly + gv + llyva cos2 ]

o]
1

t
"

2
3 aNcosu#-Kacos |:+p+p“+u'tl

and

ugy = CAFz(l; cos x - a) sin «x o

(7.11)

A

Stability of motion.- Now having established the

baslc equatigns of motion for the case of a rigid swiveling
landing gear, attentlon 1s directed next to the meaning of
these equations with respect to thelr predlctions of the
shimmy behavior of the landing gear. However, before golng
into’ this subject in detall, it may be useful to dlscuss
briefly what sort of information is deslired about the motlon
of a landing gear. Basicly, the most Important question 1s
to determine whether or not the motlon 1is stable, that 1s,

does the wheel tend to move in a straight line (with decaying
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shimmy oscillatlons or decaying aperiodical motlon) or does
the tire tend to move laterally out from 1ts rectillnear
course (with divergent shimmy osclllatlions or divergent
aperiodical motion). To answer thls question of stabllity
for linear systems, the analytic methods of RouthT4 or
Hurwitz 72 or graphical methods simllar to those introduc;d
by Nyquist76’77 ere available. Any of these methods will
provide, for most cases, a procedure for determinigg whether
any pafticular combination of landing gear parameters and
rolling veloclty 1s stable or unstabls.

In general, for complicated problems, rather than
Investligate the stabllity of a landling gear by these methods
for all possible conditlions, it may be more convenlent and
sometimes more valuable to draw varlious types of stablllty
dlagramg describling the system in question. For example,
for Case I, a typlcal experimental type of stability di agram

in shown In Figure 7 which presents boundaries between the

T Edward J. Routh, Dynamics of a System of Rigld
Bodies, Part II. Sixth edition New York: The MacMillan Co.,

1505, L8l pp.

75 E. A, Gulllemin, The Mathematics of Clrcult
Anglysis. New York: John Wiley and Sons, Inc., 1949, 590 pps

76 &, Nyquist, "Regeneration Theory," Bell System
Technical Journal, Vol. 11, Jan. 1932, Pp. 126-141.

77T w. Frey, "A Generalization of the Nyquist and
Leonhard Stabllity Criteria," Brown Boveri Review, Vol. 33,
No. 3, March 1946, Pp. 59-65.
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reglons of stability and instabillty as functlons of traill
and rolling veloclity for a speciflc landlng gesar model.
Another useful type of stabllity diagram for some problems
might be a plot of boundaries between stable and unstable
regions as functions of damping moment and rolllng velocity.

To determine these stabllity boundarles, use 1s made
of the well known fact that the motion of a linear system
can change from a stable to an unstable conditlion only where
the motion 1s purely oscillatory, In terms of ¢, of the

form

inlx
AR (7.12)
or where the motion 1s purely unlform, of the form
y)
V=¥, (7.13)

Thus all possible stabllity boundaries can be obtalned by
directly substltuting expressions of the form of equatlons
(7.12) and (?.15) into the basic differentisal equations., In
connection with the question of what form of the differential
equation to use, it 1s of some importance to note that the

final form where the equatlon ls expressed in terms of one

variable 1s often not the most convenient form to use. For
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example, for Case I, the purely oscillatory boundaries are
most advantageously obtalned by using the equations (7.5)
and (7.7) with the substitutions

L

1vo,X
v=vme°1

i(o x_+dl)

S (7.14)

The advantage in thls particular choice arises from the fact

that 1t leads to two algebraic equations, one of which does

,not Include the damping perameter g. This 1solatlion of the

parameter g wusually slightly eases the mathematical labor
of solving for the purely oscillatory boundaries.

The equations governing the stability boundaries for
Case I for the summary theory and for the systematic approxe
Imations are 1isted in the Appendix.

Comparlison and evaluation of the summary theory and

its systematic spproximations.- The dual object of the pres-

ent section 1s (1) to further assess the value of the summary
theory by comparisons between the predictions of this theory
and the avallable experimental data for Case I conditions

and (2) to determine by comparison of the relative predictions
of the summary theory and its systematic approximations, what
1s the simplest satisfactory systematic approximation to the

summary theory. Discussion of the previously published
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theories, as applied to Case I conditlons, 1s contained in
a later sectlion.

For convenience, the following discussion is divided
Into separate conslderations of stabllity boundary conditions
and unstable shimmy conditions.

Stabllity boundary conditions: The present subsection
deals with a discussion of theoretical and experimental
stablllty boundary conditions insomuch as they are influ-
enced by the tire parameters 1i,(n=1, 2, . . .), §, N,
and v. In the major part of thls dlscussion, the type of
stabllity béundariea consldered are the type obtalned by
plotting curves of trall against rolling velocity for those
trall condltions separating regions of stablility and insta-

bility. The general shapes of these stability boundaries for

Case I, according to the summary theory and the systematic

approximation theories A to D3, are sketched in Figure 8 for
the special conditlon of no damping or gyroscopic moments

(g =+ =0). It 1s seen that the summary theary and approxi-
mations A to C2 each predict that at high speeds the motion

1s stable for large tralls and unstable for small tralls;

the horizontal boundary line 1s the same for each case,‘and

1s generally located at a trail foughly equal to the tire
radius. (This boundary.is theoretically completely indepég;tiw
dent of the spring restoring moment PD¢y and 1is relatively

independent of swivel axis inclination x.)
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Approximations D1, D2, and D3 fail to predlct thls boundary.
Also these three approximations, together with approximatlons
Cl and €2, fall to predict any effect of rolling veloc?ty on
the low speed stabllity boundaries while the higher theories
demonstrate that for sufficlently small speeds, the motlon
becomes stable for all small trails according to approxima-
tion B and for most of the small trall regions accordlng to
the hlgher theorles. Also at low'speeds and large (usually
impractical) tralls, the higher theories (B and above)
Indicate that the motlion becomes unstable at sufficiently
small speeds. The effects of the omitted damper and gyro-
scoplc moment terms would be to reduce the slze of the
reglions of 1lnstabllity. -

(a) Effect of higher 1 terms: As a first test of

n
p

the summary theory and 1ts systematlc approximations, there

are avallable the experimental data of Schlippe and

Dietrich,78’79’80_which were obtalned with a small model
tire. This model landing gear was tested at relatively low

speed conditlions where the higher 1 terms (1., 13, . e e)

n

g ' ’
7 B. von Schlippe and R. Dietrich, Zur Mechanik des
Luftrelfens, op. clit.

7 B. von Schlippe and R. Dletrich, "Das Flattern
elnes bepneuten Rades," op. cit.

8o B. von Schlippe and R, Dietrich, "Das Flattern
eines mit Luftreifen versehenen Rades," op. clt.
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are of some importance; conssesquently, these data provide

an opportunity for testing the relatlve and absolute validlty
of the summary theory and the higher approximation A to C2
(which differ essentially only by their inclusion or omls-

sion of the higher 1 terms).

n

The basic landing gear and tire constants for the

Schlippe-Dietrich model, which was tested only 1n the until-

“ted condition (x = 0), as taken from Schlippe and Dietrich's

papers, are as follows

l=p=g=0

~ 2 2
I~ 0.5% + 0,0025a“ cm-kg-sec
L =10 cm

N = 6,0 kg/rad

Ky * 3040 cm-kg/rad

=
il

A = 15 xg/em

The quantities 13, h and the higher Zn's were calculated
from the previously dlscussed relations 1, = N/KX,
h=1;-L, and 1, = (nL + )"~ 1/m'  (see equations (4.9)

eand (2.20)).
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The experimental data obtalned by Schlippe and
Dietrich for the model are shown in Figures 9 and 10
together with the corresponding predictions of the suﬁ%;;gﬁii¥i
theory and the systematlc approximations A to C2. (Also
shown are the predictions of the theory of Schlippe and
Dletrlich which are discussed 1In a later section.) Flgure 9
presents stabllity 5oundary plots of trall against velocity
and Flgure 10 presents the frequency at these stabllity
boundarlies as a function of velocity. No theoretical curves
are shown on these Flgures for approximations D1, D2 and D3
slnce these approximations are too crude to give any detalled
information for this problem; they either predict completely
stable or completely unstable motlon for all posjtive trails
(see Figure 8). The equations used to calculate the theoret=
icel curves In these two Figures are given in the appendix.
In these calculations, the gyroscopic torque term involving
T has been neglected since T 1s unknown for these data.
While a rough value of r could perhaps be estimated, such
a dublous estimate dld not appeayp necessary since the term

Involving v, according to any reasonable estimate of 7,

would be of no importance in the velocity range of these

experimental data.
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does not glve as close agreement but it 1s still fairly

good and, more 1mportaﬁt1y, for most of the trall range,
the,diE}erence between appréximation B and the summary theory
1s smell beslde the difference between the summary theory
and the experimental data. "As was previously noted, approx-
imations Cl and C2 (which are ldentical for the present con-
dition of x = 0) predicts a trall-veloclty stabllity boun-
dary which 1s Independent of velocity so that thls approxi-
mation 1s an Ilnadequate reptesentation of the summary theory
at low veloclties. However, at high speeds, approximations
Cl and C2 glve the same stabillity boundary and frequency as
the higher approxlmations.

As a further ald in comparing the different systematlo
approximations with the summary theory, Figure 11 presents a
plot of the llnear dampling coefficlent " g required to sta-
bllize the motion of the Schlippe~Dietrich model at a medium
trail of 7 cm as calculated according to the summsry theory
and the various systematlic approximations (the equations
used are presented In the Appendix). This Filgure confirms
the conclusions drawn from the previous Figures 9 and 10,
namely, that approximation A 1s a very good representation

of the summary theory and that approximation B is also a

good representation of the summary theory. However, more

importantly, this Filgure demonstrates that approximations C1l

and C2 also glve a fairly good representation of the summary
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theory with respect to prediction of the maxlimum amount of
damping (that 1s, the maximum value of g) required for sta-
billzing the motion. Approximations D1, D2, and D3 are seen
to give inadequate representations of the summary theory.

The preqeding concluslons are, of course, only proven
to be valld for the speciflic conditions of the Schlippe-
Dletrlich model tests. However, 1t 1s believed that these
conclusions are probably valid for most practical rolllng
conditions.

To next consider the correlation between theory and
experimentffor the Schlippe-Dietrich test conditions, 1t 1s
noted that the experimental stabllity boundary in Figure 9
18 of the same general shape as'that glven by the summary
theory and approximations A and B, but that it lles to the
right of the theoretical curves thus indicating that the
exper lmental system 1s more stable than the theoretlcal
system., Similarly, the experimental frequency-veloclty
curve in Flgure 10 falls below the theoretical curves. These
discrepancies are perhaps a result of the neglect of hyster-
esls damplng 1n the calculation of the theoretlical curves.

(b) Effect of 17: The next test of the‘summary theory
will be made by mak ing use of the experimental data of

Melzer,81 who performed a series of model tests with an

8
1 M. Melzer, op. cit.
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Thus the resulta of the preceding comparison do indicate

that there exists a range of rolling speeds in which the

- kinematic equation of the summary theory, as well as of

approximations A to C2 is reasonably correct (except pos-
sibly for the as yet not evaluated and not too 1important
terms Involving ).

In regard to the question as to whether these calcu-
lations hold for the entire practlcal range of rolling
speeds, it cah be saild with safety that the range of veloclty
for which the theory gives good agreement with Melzer's
model data corresponds to full scale conditions somewhere
Inside the practical rolling speed range and ﬁossibly
covering much of the practlical range. However, the preceding
comparison definitely does not prove anything about the
adequacy of the summary theory for small velocitles or for
the highest velocitles which may be encountered in practice,

Further confirmation of the preceding concluslions are
provided by the experimental data of Schrode,82 who per-
formed tests similar to the just discussed tests of Melzer,
for realistic pnéumatic tires as large as 39 c¢cm (15 in.) in
diameter, as compared to the small 7 c¢cm (3 in.) in diameter
solld rubber tire tested by Melzer, and obtained trail-

veloclty stablllity boundary plots of the type 1llustrated in

o2
H. Schrode, op. cit.
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Figure 7. These stabllity boundary plots indicate the
saménresult as Melzer's déta, namely, that there exists a
;ange of velocity in which the motion 1s stable above a cer-
tain critical trall a, . and unstable below it. While 1t 1s
not possible to quantitatlvely check the theoreticsl stabil-
1ty boundary equaﬁion 8, = vy for Schrode's daté since
Schrode provides no Informatlion sultable for accurately
evaluating 11, some qualitative confirmation may be found
since the quantity 121 always appears to be of the order of
magnltude of the tlre radlus r and, for Schrode's datsa,

8 13 found to be of this same order of magnitude (for
example, see Filgure 7). Thus Schrode's experimental data
appear to confirm the prevlously drawn conclusion that there
exlsts a velocity range In which the kinematic equations of
the summary theory and approximations A to C2 are valid.

Dletz and Harlinga3 have presented some simllar sta-
billity boundary curves which also confirm the foregolng con-
clusions.,

(c¢) Effect of ¢: Some insight into the effect of
the tilt parameter & can be obtalned by an examination of
the effects of swivel axls inclination «x on the stability
boundaries according to the predictions of approximation C1l

for the condition where dampling, spring restoring and

8
7 0. Dietz and R. Harling, op. cit.



&

U}

125

gyroscoplc moments are neglected (g =7p = v+ = 0) in order
to 1solate the effects of Inclination. (These assumptlons -
appear to be justified for the experimental conditlons to
be discussed iIn this section.) Under these assumptions,

oné theoretical stabllity boundary 1is given by the equation

8, = 1y cos g + 1%9 sin x (7.15)
EXperimshtal data sultable for testing this relation have
been obtained by Dietz and Harling&*L for an inclination

range =-20° <k < 20° for one constant veloclity condition.
These experimental data, some of which has to be slightly
extrapolated from Dietz and Harllng's data, are shown in »
Figure 12 together with the predictions of equation (7.15)
for values of § equal to O and 1. While Dietz and
Harling did not supply the values of L, h and 11 needed
for calculations, the assumed values indicated on the Figure
are probably accurate enough torjustify the followlng more

or less qualltative conclusions. (The valué of 1, was
chosen such as to make the calculated and experimental values
agree for the case x = 0,) It is noted that the experimen-
tal varlations and the theoretical variations for ¢ = 0 are

in falrly good agreement and also that these two varlations

vSir
“ Ibid.



ﬁ!\

L |

Critical trail, ag, cm

126

8r e —— 5 =1
//_/‘—O“—‘O‘\Q\ _
- o 3o
. O
61~
}_‘__
O Partly extrapolated experimental data
_________} Theoretical variations (assuming
— T 77/ L=5cm, Zl = 7.5 c¢my, h = 2,5 cm)
2..
i 1 1 | i J

=20 ) -10 0 10 20 30
Inclination, K, degrees
FIGURE 12

INFLUENCE OF SWIVEL AXIS INCLINATION ON THE STABILITY BOUNDARY FOR A
12-CENTIMETER DIAMETER TIRE. F, = 6.25 kg, v = 19 km/hr
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are more or less symmetrical with respect to positlve and
negative values of k. On the other hand, the theoretical
curves far ¢ > O such as the indlcated curve for g =1
will 211 be unsymmetrical. Thus, 1t appears that ¢ 1s
probably close to zero. In thils connectlion, it might be
noted that Greidsnus' theory, which is the only known theory
using a g-type term, Implies a value § > 1 (compare equations
(6.3) and (6.01)).

(d) Effect of cornering power N: As a rough check
on the varlation of the tire cornering power N under
dynamic conditions, there are avallable experlmental
frequency data obtalned by Melzer85 in connection with his
previously mentioned tests with an uninclined (x = 0)
model landing gear equipped with a 7 cm (3 In.) dn dlameter
solld rubber tire. For the higher velocity conditions of
Melzer's tests, the predictlons of the summary theory and

approximations A to D1 lead to the frequency equation

£ = Z}EJEN *Kg + P (7.16)

for an uninclined and undamped landing gesar, that 1s, for

k = v =g =0, (Inclusion of the effect of finlte ¢ 1into

85
M. Melzer, op. clt.
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this equétion would not significantly alter this equsation
for the test conditlons to be discussed here.) Some of
Melzer's experimental data are compared with the predictions
of this equation in Table IV for the conditlion p = 0. The
experimental data shown represent Melzer's data for the
highest veloclity condition tested. The theoretlcal and
experimental values shown are seen to be in falr agreement,
However, the experimental values do seem to be definltely
somewhat smaller than the corresponding theoretical values,
This discrepancy is believed to be largely due to the fact
that these expefimental tests were not conducted at suffi-
clently smsll values of shimmy amplitude for the assumptlons
of a linearized theory to be valld. Speciflecly, all of
Melzer's frequency data were obtained for maximum swivel
angles of 5° or larger. (The data shown in Teble IV cor-
respond to the condition of a 5° maximum swivel angle.)
Moreover, Melzer's date Indicate that there 1s a falrly
definite decrease in shimmy frequency with Increasing maxi-
mum swivel angle. A sample plot of Melzer's data illustrating
thls effect 1s given in Figure 13, Also shown 1s the theo-
retical calculation which is valild only for zero maxlmum
swivel angle. It 1s seen that, 1f allowance 1s made for a

certaln amount of experimental error, extrapolation of the

. experimental data to 6, = 0 could be considered to lead to

confirmation of the theory. It should be noted, however,
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SHIMMY FREQUENCY TEST DATA OBTAINED BY MELZER
FOR THE CONDITION p =0

FZ’ kg 208 306

a/ly 0.47 | 0.78 | 0.4 | 0.73 | 0.88
fealculated’ CP3 3.8 L.5 .o L.8 5.1
fexperimentals ¢PS [ 3.3 55 267 L.l b7
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FIGURE 13

INFLUENCE OF SHIMMY AMPLITUDE ON THE SHIMMY FREQUENCY
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that much of the rest of Melzer's data, while not neces-
sarlly disputing this conclusion, do not so clearly support
1t. Also it should be noted that plots of the type of
Flgure 13 are of limlted significance slnce each test point
shown corresponds to a different rolling velocity. In view
of these considerations, the only reasonable conclusion that
can be reached appears to be that Melzer's data roughly
conflrm the theoretlcal frequency and do not conclusively
dispute 1ts quantitative accuracy.

Melzer also conducted frequency tests on the same
model with an additional strong restoring spring (spring
stlffness several times the tlire torsional stiffness). A
comparison of theoretical and experimental frequencles for
.this test 1s shown in Table y. The much better agreement
obtalned for thls case is explaine\mpy the predominant influ-
ence of the spring restoring momgéfféince for large p the
model system approaches the condi%}pé of a simple torsional
osclllator of moment of inertia I and spring constant op

‘ ¥
for which condition the well known frequency equation 1s

2nf = .
m \’p/Iv

In order to assess the significance of the preceding
comparisons, first consider the quantities involved in the

theoretical equation (7.16), namely, =a, N, K,» P, and Iy

The quantities a, p, and I* are easlly measured constants
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SHIMMY FREQUENCY TEST DATA OBTAINED BY MELZER
FOR THE CONDITION p ¥ O

F,, kg 2.0 2.8 3.6

a/l, 0.77 0;69"70.86 0.69, 6.86
fealculateq? ©P3 5.2 5 | 5.7 | 5.5 5.8
fexperimentals °P8 | b9 ] 5.45 ] 5.9 | 5.8 5-851
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and for most of Melzer's data, K; 1s much smaller than

aN; therefore,bthe preceding falr agreement bstween theory

~and EXperiment indlcates Ehat the quantity N, the tire

cornerling power, whlch was considered to be a constant in
the preceding calculatione, actually does not vary extremely
with rolling velocity and shimmy frequency, at 1ea§t not for
Melzer's test condltions.

(e) Effect of gyroscoplc torque: The next question
to be considered 1s the influence of the gyroscopic torque
resulting from tire lateral distortion. All pertlnent
experimental data obtalned at very high speeds (for example,
see Flgure 7) demonstrate that at sufficlently high speeds,
the previously discussed conclusion that high-speed motlion
i1s wnstable for tralls less than 17 1is no longer valld.
Instead at these very high speeds, the experlimental data
show that lnstabllity at any given positive trall ceases
above a certaln critical veloclity. The existance of this
critlcal velocity will now be shown to result, at least in
part, from the gyroscopic actlion which was previously
Included only in Kantrowitz's theory,s6 but was not mentlioned
there specificly. The simplest systematic approximation
whlch adequately provides for this effect 1s approximation

C2., 1In order to 1solate the gyroscoplc effect, consider the

<86»Arthur Kantrowltz, op. cit.
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speclal condition of no tilt (x = 0) and no spring
restoring force (p = 0) or damper (g = 0). For this
condition the equation for the stability boundary of apprbx-
Imation C2 (or Cl) reads
2y - 2

) = I,v ll(aN + KQ.)

(I'vc2 + avvczll)(azN + aK, + levc e
(7.17)

where the underlined terms are the gyroscopic terms. For

the computation of the critlcal veloclity v, thls equatlon

may be simplified still further if 1t is reallzed that the

quantity arl, is small beside the moment of inertla I'

about the swlvel axls; hence, for an approximate calculation,
2

the term aTvv ll can be omitted. Then solutlon of equatlon

(7.17) for the critical veloclty v, above which the system

c
i1s steble ylelds the expression

(11 - a)(aN + Kq)
7;17

(which 1s observed to give an infinite critical veloclty for
zero gyroscopic action (T = 0)),

The only avallable experimental data containing
enough information on the necessary tire constants for

checking the valldity of equation (7.18) is Melzer's data87

&7 M. Melzer, op. cit.
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and even this data does nbt provide the required gyroscople
moment ; th;fefore, it can only Be crudely estimated as
follows. The mass of the tire will be of the order of mag-
nitude wy 2m(r - r)) vrh? where r 1s the tire overall
radius, rh the tire torus radlus and W, the average t%re

density. The moment of Inertia will be the mass times the

radius of gyration rg squared; thus + (see equation

(3.13)), with 7, = 1/2 accordlng to Kantrowitz,88 becomes

) ﬁzwlrh‘?(r - ru)rg2

T r(r + rz)

For the usual tire ru & 0.3r, r3 1s slightly smaller than

r, say ry 2 0.9r, and r_ 1s probably around 0.8r. Then
3 »

g
to a crude approximation + & 0.21 w1r3. For Melzer's solild
rubber tire r = 3.5 cm and w; is probably around

10'6 kg-secz/'cml*L (specific gravity of one), thus

v % 1072 kg-sec?/em. Critlcal velocitles calculated with

this value of v from equation (7.18) are compared in
Figure 1l with some of Melzer's experimental data for one
test condition at varlous values of a/ll. The calculated
and experimental values of critical veloclity are seen to be
of the same order of magnitude. Since neglect of the gyro-

scoplc moment gives theoretically an Infinite critical

ce Arthur Kantrowitz, op. cit.
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velocity, thls agreement indicates that the gyroscopic
moment 18 an lmportant factor iIn producing stabllity at high
velocitles. It 1s also of interest to note that the theo-
retical calculation 1s conservative, that 1s, the unstable
reglon 1s overestimated. In regard to quantitative agree-
ment between theory and experiment, the agreement 1s fair
but far from excellent, One probable reason for some of the
Indicated disagreement 1s the relatively crude procedure
used for estimating the parameter .

In concluding this discussion of gyroscopic torque,
1t should be noted that for the case of a rigld landing
gear, the critical deslign condition (velocity at which
shimmy is most intense) occurs at low rolling speeds where”
the gyroscopic moment is insignificant. Thus, the inclusion
of thls gyroscopic moment in the theory 1s somewhat of R
purely theoretical interest (at least for Case I) and prob-
ably could be safely omitted in practical design calculations.

Unstable shlmmy conditions: As a further overall
check of the summary theory and its systematic approximations
there are avallable the experimental data of Kant;owit289
for unsteady shimmy conditions. S

In the case of unsteady shimmy motion, the signifi-

cant features of the motlion are the frequency and divergence

89
Tbid.
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of the oscillation, where the divergence and frequency ére
simply the real and imaginary parts of the roots of the
characteristic algebralc equation corresponding to the
differential equation In guestion. Kantrowltz has made
measurements of these quantities for a li-inch dlameter model
tire at inclination angles of ® = 5° and 20° with corre-
sponding trails of about 0.,08r and 0.31lr, respectively.
His experimental results for K= 5° are presented in

Figure 15 together with corresponding theoretical calcula-
tions made according to approximation B which 1s the simplest
systematic approximation to the summary theor& which at

least qualitatively describes the shimmy phenomena through-
out the complete range of rolling veloclty. The theoretical
and experimental frequencies are seen to be iln falrly good
agreement. The theoretical and experlmental divergences are
in fair qualitative agreement, but quantlitatively, the exper-
imental variation is sometimes considerably below the corre-
sponding theoretical one. Thls quantitative dlsagreement

may be due to several factors. First, hysteresls effects,
which may be of some Importance for these data, are neglected
in the theoretical calculations. A second partial explana-
tion for the indicated disagreement arises from the fact

that the theoretlical calculations may be based on Insuffl-
clently accurate values of the necessary tlre parameters

since Kantrowitz did not provide direct measurements of the
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most fundamental tire parameters, such as h, a, N, Kqs
eté.; Instead he measured only certain different secondary
tire parameters. Specificly Kantrowitz measured only the
quantlity L, a quantlity approximately equal to aN cos x +
Kq coszg for 2 values of x, and the path frequency %
and trall a for klnematlc shimmy (shimmy with velocity
approaching zero). The basic tire parameters used for cal-
culating the theoretical curves in Figure 15 were approxi-
mately deduced from these quantities as follows. The
quantity h was obtained from equation A-1 of the Appendix
after setting v = 0 and substituting Kantrowitz's experi-
mental values of 1L, vy and & for kinematic shimmy. This

procedure for determining the quantity h s, however, not

necessarily too accurate since equation A-1 neglects tire

hysteresls effects which may be important for the condition

lating the trall, was estimated from Flgure 8 of Rotta's ~

paper.9o The trall was computed from the tire radius, the

tire deflectlion and the inclination. With the aid of this

estimated value of trail, the tire parameters N end Kg _

can be obtalned from Kantrowltz's approximate eXpressiqng

it hi s emesan

for aN cos x + Kq cos® k. While the Just discussed procedure

PR

for deduclng the fundemental tire parameters for Kantrowitz's

90
J. Rotta, op. cit.
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data will probably give roughly correct values of most of

the fundamental tire constants, 1t 1s believed that the I

limitations of this procedure and the neglect of the hyster-

esls effects 1n the theo;;tical calculsations ére sufficient
reasons to prohibit the maklng of any strong polnt out of

the discrepancies between theory and experiment in Figure 15.
Thus, to summarize, 1t appears that Kantrowltz's data fur-
nish only a rough overall confirmatlon of the summary theory
and while quantitative agreement 1is poorer than for most of

the previously discussed experimental data, this poorer

agreement 1s not necessarily significant.

This completes the discussion of Case I with respect

to the summary theory and 1its systematlc approximatiéns.'

Next, attention will be directed to a discussion of Case I
with respect to the predictions of some of the previously
publlished theories, ’

Discussion of predictlons of some of the previously

published theories.- Some Interesting features of the

previously published theorles In relation to Case I are as
follows.
The theory of Schlippe and Dietrich9l gives predic-

tions which are substantlally the same as the predictlons of

. e
? B. von Schlippe and R. Dletrich, Zur Mechanik des
Luftreifens, op. cit.
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- 10, From these Figures, 1t 1s seen that the dlfferences

12
the summary theory as can be seen by a compsarison of the
predictions of these two theorles in Figures 9 and 10 for
Schlippe and Dietrich's model test conditlons. In comparing
these two theories, it should be noted that the only differ-
ence in these two sets of theoretical curves rises from a
slight difference In the expressions used for thé tire
elastic forces and moments (see Chapter III). While the
Schliﬁbe-Dietrich theory also provides for some tire width
effects, these effects for the present test condltions are
belleved to be relatively small and were not taken 1n£o

account in computing the theoretical curves In Flgures § and

between the stabllity boundaries and frequené?%iﬁ%???’fof"ﬁ;J

Ty a

the Schlippe-Dietrich theory and the summary th
usually small beside the differences between the theoretical
curves and the experimental data. Thus, it seems reasonable
to conclude that there 1s no great significant difference
between the main features of the summary theory and the
Schlippe-Dietrich theory.

Bourcler de Carbon's advanced theory92 provlides essen-
tially the same predictions as approximation B and will thus
probably glve a reasonable prediction of shimmy behavior for

the complete velocity range. Simllarly, Bourcier de Carbon's

2
? Christlian Bourcler de Carbon, op. cit.
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elementary theory,93 correspondling to approximation C2, will

I
té

probably give reasonable predictions for the high velocity

‘o

range. 7
Melzer's theory9LL correctly predicts the existeqee.bf
the large trall stabllity boundary given by the equatlon
8 = 1] but 1t also predlicts the exlstence of stable motion
In the small negative traill region between zero trail and a
trall equal to -¢ = -Ko/N. Thils latter prediction is in
. disagreement with the exper imental data of Schlippe and
Dietrich?? who conducted some tests in this trail raﬁééugéé*‘hﬂw—W“ﬂn
found the motion there to be unstable.
The stebllity boundary according to Moreland's

advanced theory96 for the case of no damplng or spring

restoring forces 1s given by the equation -

O

1 8o
-C .1
(1 - Toac /13 Ll) (7.15)

\W\' LN

&

[¢]
Tk
w |

]
[

1”7 N2

93 Ibid.

oh M. Melzer, op. cit.

95 B, von Schlippe and R. Dietrich, "Das Flattern
eines mit Luftreifen versehenen Rades," op. cit.

LY 96 William J. Moreland, "The Story of Shimmy," op. cit.
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- eritical trall-veloclity curve, the varlation predlcted by

where
T, = N1.C-2/1
2 171 v

This equation is plotted in Figure 16 for zero time constant

(for which case Moreland's theory reduces to the subcase of

"approximation C2 where ¢ = Kq = 0) and for several finite

values of the time constant parameter r,. It Is seen that
if the time constant parameter 7, is large there no longer
exists a large trall stabllity boundary at the trail

8c = l7. Slnce the actual existence of this large trall
stabillty boundary has already been demonstrated In previous

parts of this paper, it appears llkely that 7, cannot be

very large. On the other hand, If 1, is small, the intro-

duction of the time constant term is seen to produce an
almost linear decrease of critical trall with Increasing

velocity until a certain limiting velocity (equal to 1y/Cq)

1s reached; above this velocity, all-motlon 1is stable. Thus,

the influence of the time lag constant term 1s somewhat like
that of the previously dlscussed gyroscopic moment due to
tire distortion which may also produce stablllty at high

velocitlies. However, 1n regard to the general shape of the

consideration of the gyroscoplc effect (see so0lld line in

Figure 1) appears more like that of the experimental data
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(Figures 7 or 1;) than does the nearly linear variation
predicted from Moreland's time lag term for small T,.
(It should be noted, however, that this criticism of Moreland's
theory 1s based on the assumption that the time lag constant
Cy1 1s a pure tire constant, Independent of the landing gear
geometrical and lnertla propertles. If on the other hand,
Moreland considers the time lag constant to be an overall
landing gear perameter, than C, may be a function of trail
aﬂd the preceding dlscussion based on the assumption that
C; 1s constant may be invalld.)

Moreland's elementary theory,97 Temple's elementary
theory98 and Maier's99 and Taylor'sloo theories are too
crude to give any detalls for Case T,

Kantrowltz's theory101‘incorrectly predicts Insta-
bility for all positive tralls in the absence of damping or

gyroscopic moments.

97
op. cit.

98 G.. Temple, "Preliminary Report on the Theory of
Shimmy in Aeroplane Nose Wheels and Tail Wheels," op. cit.

willlam J. Moreland, "Landing-Gear Vibration,"

9% E. Mater, op. cit.

100 5, Lockwood Taylor, op. clt.

101 Arthur Kantrowltz, op. cit.,

1k
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Wylle's theory102 correctly predlcts the existence
of stabllity st large tralls; however the particular value

of critical trall predicted is given by the equation

aclag + ¢)NI, = Iv2L (7.20)
for x = 0. This relation fmplies that the crltical trail
i1s a continuously Increasing function of velocity while the
previously dlscussed expefimental data clearly Iindicate that

the critical trall rapidly reaches the maximum value by
Case II

The present section of this paper is concerned with
the discussion of an ldealized landing gear whose configu-
ration 1s shown in Figure 6. This laﬁding gear consists of
a wheel free to swivel about an uninclined always vertical
swivel axls, this swivel axls belng attached by a horizontal
linear sprlng, of spring constant k, to the supporting
structure. This Case II configuration is discussed here for
two reasons; first, because it glves an 1llustration of the
effect of structural elasticity on wheel shimmy and, second,
because 1t provldes an opportunity better suited than Case I

for evaluating epproximations D1, D2 and D3 with respect to

102
Jean Wylle, op. cit.
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the application of these theories to landing gear problems
involving structural elasticity. (It may be recalled that
these three approximations were of little value in deallng
with the case of a rigld landing gear strut (Case I); how-
ever, for the present csase of a flexlible strut, these
approximations may sometimes be of value) In discussing

Case II, no futher mentlon will be made regarding the

previously published theories or of the question of agreement

between theory and experiment; all discusslon will be
restricted to the summary theory and 1ts systematlc approxi-

mations.,

The discussion of Case II proceeds as follows. Filrst,

the equations of motion for this case are derived accordling
to the summary theory. As for the previous Case I, it 1s
more convenlient to rederive these equations of motion in a
slightly different manner rather than to apply the earlier
derlved equations for the completely general case. After
making these derivations the equations for the stabllity
boundaries sasre established. Finally some curves of the
damping required to prevent shimmy, as functions of strut

stiffness and rolling veloclty, are presented for a specific

semple landing gear confliguratlon according to the predictlims

of approximations €, D1, D2 and D3, (For the present case,

approximations Cl and C2 are identlcal and are, for conven-

P |

lence, henceforth referred to collectively as approximation C.)
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These curves are utilized to obtaln some Iinsight Into the
relative accuracies of the predictions of approximations

D1, D2, and D3 with resﬁ$ct to the more advanced eapproxl-
mation C.

&

General derivation.- The derivation of the equation

of motion for the summary theory proceeds as follows. The
detalls of the landlng gear conslidered are lllustrated in
Figure 6. This gear has a rigid symmetrical swiveling part
having a mass m and a moment of inertla about its center
of gravity IO' The nonswiveling part of the landing gear
consists of s spring of stiffness k with an attached mass
m; . The lateral dlsplacement of the swivel axls 1s deslg-
nated as ng,.

Setting the sum of the lateral spring and inertls
forces acting on the swivellng part equal to the lnertia
reaction of its center of gravity tha(ﬂa - c50) ylelds

the relation
KA. - kN, = mDy2n, = mDy2m, - me-Dy26 (7.21)
y S0) Na 1t Ma t Ma 25t .
and substitutlion for )O from the relation

AT V0=-Mp =J0 - TMa + a6 (7.22)
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(see Figure 6) ylelds after rearrangement

K,Jo - (mDg? + mDy® + Ky + k)n, + (me,De2 + aKy)e = 0
(7.23)

Setting the sum of the moments about the center of

gravity of the swiveling part equal to the inertia reaction
yields the result

2
Kqa - leocl - kngcp - myDy“nge, - ght® - po -

TVDLAg = IgD26 (7.24)

(see Filgure 6) where I, represents the moment of inertia
of the swiveling structure at its center of gravity

(io = I, - mczz). Substitution for a and Ay according
to equations (3.4) and (7.22) then, after rearrangement,

yields the result

(r VD¢ - Kav'lDt + Klol)yo + (mlCBth - 7vDy + kep - Kxcl)“g +

(IgDgS + gDy + TavDy + p + Ko + ac1K5)6 = O

The third equation for this system for the general

~case 1s glven by the kinematic relation of equation (2.20)1,i:w

This relation, after omitting vy, replacing space derivatives

by time derivatives and setting Mg = Ma ~ a6, reads
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2

(7.26a)

LY

or

-1
(1 + Lv~1p,)eRV Dt

Yo+ (13 ~8a)e +mg =0 (7.26D)
The three equations (7.23), (7.25) and (7.26) com-
pletely describe the motion of the landing gear according to
the general theory in terms of the three varlables Yor MNa
and ©. The corresponding equations for the systematic
approximations can be easily obtained in a similar manner.

Stabllity boundaries.- The stability boundaries for

Case II are obtalned in the same manner as was indicated in
the discussion of Case I. For the summary theory, they are
obtalned as follows.

Purely oscillatory boundaries: The equations for the
purely oscillatory motion boundaries are obtained by substi-

tuting into the differential equations the expressions

7™
- ot
e = Qme
Mg = “amei(0t+ﬂl) = ﬂameiut(cOS °1 + 1 sin ol) ,(7.27)
1(ot+02)
Y0 = Yome = Yomeint(cos g, + 1 sin 02)
U
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;co Substitution of these relations into equations (7.23), (7.25)
and (7.26b), differentiation and cancellation of el° and

separation of real and Ilmaginary parts into separate equa-

tions ylelds the expressions

K)\(YOm cos 0,) + (mlbz + moP - Ky - k)(ng, cos &) +

(B.Kx - m02'°2)9m =0 (7028)

2

RKpn(yom sin o) + (m1°2 + mv® - Ky = k)(ng, sin 6) =0

(7.29)

from equation (7.23),

°1Kl(y0m cos 62) - (TVO = Kav"lb)(yom sin 62) +

-

t (-m102°2 + cok - ¢1K)(ngy 08 97) + rvolng, sin e;) +
(--Iod2 + p + K, + acKyloy = 0 (7.30)
¢1KA(vom 31n-’2) + (vvo - Kav"lv)(yom cos d,) +
(-mc2u2 + key = Kpep)(ngy sin o7) = rvelngy cos 07) +
(go + Tavo)e, =0 (7.31)

e

from equation (7.25), and
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“P1elTom €08 95) * Dou(y, 8in 6,) + (1, - a)e, +

(Mg cos 6;) =0 (7.32)

-pZ-(yOm cos 02) - plcn(yOm sin °2) + Nam sin 9 =0
(7.23)

from equation (7.26b). Equations (7.28) to (7.33) can be
consldered as six linear simultaneous algebralc equations

with no constant terms in the five variables Yom 08 02,
Yom 8in 0,, ngy cos 0., Nam Sin % and 6,. Then for this

system of equatlions to have solutions other than zero, it is
necessary that the determinant of the coefficlents of any

group of five of these six equations should equal zero. The
determinant for equations (7.28), (7.29), (7.31), (7.32) and

»

(7.33) reads
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Equation (7.3L) glves thé frequency for purely oscillatory
motion as & functlon of the landing gear properties and
equation (7.325) glves the amount of damplng required for
this purely oscillatory motion as a functlon of the frequency
and the landing gesar properties. The corresponding equations
for the systematlic approximations can be obtained elther by
following through a similar derivation for each approximation
or, in some cases, by applylng appropriate simpliflicatlons
to equationé (7.34) and (7.35). For example, to obtain the
boundary equatlions for approximation B, whose basic equation
is 1, =0 for n>2, p,, and p,,  In equations (7.34)
and (7.35) may be replaced by their respective serles
expanslion expressions according to equation (5.2a) and then
the approprlate higher order terms In the two series may be
omitted. |

Purely uniform motion: For purely uniform motion,
all variables will have constant values which may be repre-

sented as
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Substitution of these relations into equations (7.23),
(7.25) and (7.26) ylelds the results

8K\ - (KX + k)ﬂam * K\Yom = O
(p + Ka + &Cle)gm + (Cak - Clxl)ﬂam + CIKKYOm =0
(ll - a)e, + Yam = Yom = ©

For nonzero solutlons of these three equations, the deter-

minant of the coefficients of 6 and Yom must be

m?* Nam

zero., Evaluatlion of this determinant gives simply

a+e +pN=0 (7.36)

2
Evaluation of approximations D1, D2 and D3.- In the

earlier discussion of Case I, it was not possible to present
a falr relatlve evaluation of the three parallel approximste
theorles D1, D2 and D3 since for Case I, none of these
theories provides any realistic information. However, for
thg present case II, such a comparison can be made between
the predictions of these three approximations and the more
accurate approximation C, and a specific example 1s discussed

here for a sample landing gear conflguration having the
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relative dimensions and properties: L = 0.8r, h = a = 0.5r,

2

) T e, = 0.25r, € = 0.3r, my; = 0.35m, I, = mr and

0

T =p =0, The actual calculated behavior of this landing
gear in term; of damping required:for stability as a functlion
of rolling velocity according to approximation C is shown
in Filgure 17 for fouf values of the ratlo of strut stiffness
to tire stiffness k/K)‘. It 1s seen from this Figure that
as the stiffness of the sfrut is decreased from infinity,—
the damplng requirement 1is increased. Also for large strut
stiffness, the reglon of maximum damping required lles at
low speeds while for small strut stiffness, it l1ies at higher
speeds, |

The theoretic predictions of the three theorles D1,
D2 and D3 for thls sample landing gear are compared with
the corresponding predictions of the more accurate approxi-
mation C (from Figure 17) in Figure 18 for three values of
strut stiffness, k = O.ZKK, 1.0K,, and 5.0k, It is seen
that for each strut stiffness, spproximations D2 and D3
provide a considerable overestimate of the damping required
for stabllity. On the other hand, approximation Dl gives
results in good agreement with those of approximation C for
the ratios k/K, = 0.2 and 1.0 but this approximation
greatly underestimates the damping for the large value of
strut stiffness k/K, = 5.0.
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FIGURE 17

INFLUENCE OF STRUT STIFFNESS ON DAMPING REQUIRED FOR STABILITY
ACCORDING TO APPROXIMATION C FOR A SAMPLE LANDING GEAR HAVING
THE PROPERTIES L = 0.8r, h = a = 0.5r, ¢, = ¢, = 0.25r,
€ =0.3r, m =0.35m, I =mr2, AND" T ="P =0
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In view of these comparisons, it appears that approxl-
mations D2 and D3 will not, in general, glve rellable
quantitative estimates of the damping required for stability.
For approximation D1, 1t appears that this theory may give
reasonable results for some cases where the lateral stiff-
ness of the strut does not greatly exceed the lsteral stiff-
ness of the tire. This latter conclusion is, of course,
not necessarily a general conclusion since It is based on
only one set of landing gear parameters. To determine the
degree to which 1t is valld in general would require a more

extensive investigation for a range of landing gear proper-

ties,
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CHAPTER VIII
SUMMARY

Over the past 25 years, a large number of at least
slightly different theorles of tire motion and wheel shimmy
have been developed but there has not been much effort
directed to the reconcilliation of these different theories.
The present paper provides thils needed correlation by
demonstrating that most of the exlsting theories represent
varying degrees of approximation to a general summary theory
developed hereiﬁgw ich 1s a minor modification of the basic
theory of Schlippe and Dietrich. In most céses where strong
differences exlst between the existing theories and the
summé}y theory, the existing theories are shown to be of
Inferior merit.

A serles of systematic approximations to the summary
theory is developed for the treatment of problems too simple
to require the complexity of the complete summary theory.

Comparisons of the existing experimental data with
the predictions of the summary and systematic approximstion
theorles provide a falr substantlation of the higher
approkimate theorlies. However, some discrepancies do exist

which may be due to tire hysteresis effects or other unknown

influences. Further work may be required to resolve these

dlscrepancies, W
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- APPENDIX
‘e STABILITY BOUNDARIES FOR CASE I

The followlng equations describe the conditlons for
which purely osclllatory motlion 1ls possible for Case I for
the summary theory and the systematlc approximations,

For the summary theory and approximations A to C2

(azxx + K, cos’k + p + pn)(pl2 + p22)

V2 = +
I'“iz(pla + p22) - fblpz(oll COoS kK = 8)cos =

[(aKR + cpF, sin n)pl - ”lp2xa.f°5 n](all cos k - 4a)

» 2 2 2
‘ I'ui (pl + p, ) -Tblpa(dll COS kR = 8)COS K
. (A=1)
and
(617 cos k - a)
g = 3 [pz(aK + cyF, sin k) +
Dlv(plz + pp )
olpl(Ka cosS Kk - TVECOS nﬂ - 8TV COS & (A-2)
where for the summary theory
: P} ¥ Pje = ¢c08 Y;h - L01 sin ©h
: >

P, = Pse = gin blh'+ Lv, cos Dlh
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for approximation A

for approximation B

and for approximations Cl and C2

"
=

Py
P, = 119

For approximations Dl and D%, purely osclllatory
motion does not exist,

For sapproximation D2

92 = (aZKx + aeKk cos & + p+ p  + Tvzcoszu)/I'
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2
It(aKl cos & +,€K1 cos“g + °°sz sin k cos &)

32K1+ aeK, cos w + p + p_ + 1'v2 cosan

A x
aT cos x]

The stability boundaries for uniform motlon are

g =V

obtained by setting the coefficlent of the Yo terms in the
various differential equations equal to zero. For example,
for the summary theory and approximations A and B, the
equation

COSzu + p + p‘ +u =20

gaN cos ¢ + K X

A

describes this stability boundary.



